Skip to main content
Log in

Serum Response Factor (SRF) Ablation Interferes with Acute Stress-Associated Immediate and Long-Term Coping Mechanisms

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Stress experience modulates behavior, metabolism, and energy expenditure of organisms. One molecular hallmark of an acute stress response is a rapid induction of immediate early genes (IEGs) such as c-Fos and Egr family members. IEG transcription in neurons is mediated by the neuronal activity-driven gene regulator serum response factor (SRF). We show a first role of SRF in immediate and long-lasting acute restraint stress (AS) responses. For this, we employed a standardized mouse phenotyping protocol at the German Mouse Clinic (GMC) including behavioral, metabolic, and cardiologic tests as well as gene expression profiling to analyze the consequences of forebrain-specific SRF deletion in mice exposed to AS. Adult mice with an SRF deletion in glutamatergic neurons (Srf; CaMKIIa-CreERT2) showed hyperactivity, decreased anxiety, and impaired working memory. In response to restraint AS, instant stress reactivity including locomotor behavior and corticosterone induction was impaired in Srf mutant mice. Interestingly, even several weeks after previous AS exposure, SRF-deficient mice showed long-lasting AS-associated changes including altered locomotion, metabolism, energy expenditure, and cardiovascular changes. This suggests a requirement of SRF for mediating long-term stress coping mechanisms in wild-type mice. SRF ablation decreased AS-mediated IEG induction and activity of the actin severing protein cofilin. In summary, our data suggest an SRF function in immediate AS reactions and long-term post-stress-associated coping mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cazakoff BN, Johnson KJ, Howland JG (2010) Converging effects of acute stress on spatial and recognition memory in rodents: a review of recent behavioural and pharmacological findings. Prog Neuro-Psychopharmacol Biol Psychiatry 34(5):733–741. doi:10.1016/j.pnpbp.2010.04.002

    Article  Google Scholar 

  2. McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87(3):873–904. doi:10.1152/physrev.00041.2006

    Article  PubMed  Google Scholar 

  3. McEwen BS, Bowles NP, Gray JD, Hill MN, Hunter RG, Karatsoreos IN, Nasca C (2015) Mechanisms of stress in the brain. Nat Neurosci 18(10):1353–1363. doi:10.1038/nn.4086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pervanidou P, Chrousos GP (2012) Metabolic consequences of stress during childhood and adolescence. Metab Clin Exp 61(5):611–619. doi:10.1016/j.metabol.2011.10.005

    Article  CAS  PubMed  Google Scholar 

  5. Tsigos C, Chrousos GP (2002) Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res 53(4):865–871

    Article  PubMed  Google Scholar 

  6. Tasker JG, Herman JP (2011) Mechanisms of rapid glucocorticoid feedback inhibition of the hypothalamic-pituitary-adrenal axis. Stress 14(4):398–406. doi:10.3109/10253890.2011.586446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Teicher MH, Andersen SL, Polcari A, Anderson CM, Navalta CP (2002) Developmental neurobiology of childhood stress and trauma. The Psychiatric clinics of North America 25 (2):397–426, vii-viii

  8. de Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6(6):463–475. doi:10.1038/nrn1683

    Article  PubMed  Google Scholar 

  9. McEwen BS (2005) Glucocorticoids, depression, and mood disorders: structural remodeling in the brain. Metab Clin Exp 54(5 Suppl 1):20–23. doi:10.1016/j.metabol.2005.01.008

    Article  CAS  PubMed  Google Scholar 

  10. Nestler EJ, Pena CJ, Kundakovic M, Mitchell A, Akbarian S (2015) Epigenetic basis of mental illness. The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry. doi:10.1177/1073858415608147

    Google Scholar 

  11. Pittenger C, Duman RS (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 33(1):88–109. doi:10.1038/sj.npp.1301574

    Article  CAS  Google Scholar 

  12. Reagan LP, Grillo CA, Piroli GG (2008) The As and Ds of stress: metabolic, morphological and behavioral consequences. Eur J Pharmacol 585(1):64–75. doi:10.1016/j.ejphar.2008.02.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McEwen BS, Gray J, Nasca C (2015) Recognizing resilience: learning from the effects of stress on the brain. Neurobiology of stress 1:1–11. doi:10.1016/j.ynstr.2014.09.001

    Article  PubMed  Google Scholar 

  14. Zannas AS, West AE (2014) Epigenetics and the regulation of stress vulnerability and resilience. Neuroscience 264:157–170. doi:10.1016/j.neuroscience.2013.12.003

    Article  CAS  PubMed  Google Scholar 

  15. Gray JD, Rubin TG, Hunter RG, McEwen BS (2014) Hippocampal gene expression changes underlying stress sensitization and recovery. Mol Psychiatry 19(11):1171–1178. doi:10.1038/mp.2013.175

    Article  CAS  PubMed  Google Scholar 

  16. Lisowski P, Wieczorek M, Goscik J, Juszczak GR, Stankiewicz AM, Zwierzchowski L, Swiergiel AH (2013) Effects of chronic stress on prefrontal cortex transcriptome in mice displaying different genetic backgrounds. Journal of molecular neuroscience: MN 50(1):33–57. doi:10.1007/s12031-012-9850-1

    Article  CAS  PubMed  Google Scholar 

  17. Picard M, McManus MJ, Gray JD, Nasca C, Moffat C, Kopinski PK, Seifert EL, McEwen BS et al (2015) Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc Natl Acad Sci U S A 112(48):E6614–E6623. doi:10.1073/pnas.1515733112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang K, Xiang XH, He F, Lin LB, Zhang R, Ping XJ, Han JS, Guo N et al (2010) Transcriptome profiling analysis reveals region-distinctive changes of gene expression in the CNS in response to different moderate restraint stress. J Neurochem 113(6):1436–1446. doi:10.1111/j.1471-4159.2010.06679.x

    CAS  PubMed  Google Scholar 

  19. Ceccatelli S, Villar MJ, Goldstein M, Hokfelt T (1989) Expression of c-fos immunoreactivity in transmitter-characterized neurons after stress. Proc Natl Acad Sci U S A 86(23):9569–9573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cullinan WE, Herman JP, Battaglia DF, Akil H, Watson SJ (1995) Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience 64(2):477–505

    Article  CAS  PubMed  Google Scholar 

  21. Melia KR, Ryabinin AE, Schroeder R, Bloom FE, Wilson MC (1994) Induction and habituation of immediate early gene expression in rat brain by acute and repeated restraint stress. The Journal of neuroscience: the official journal of the Society for Neuroscience 14(10):5929–5938

    CAS  Google Scholar 

  22. Reul JM (2014) Making memories of stressful events: a journey along epigenetic, gene transcription, and signaling pathways. Frontiers in psychiatry 5:5. doi:10.3389/fpsyt.2014.00005

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schreiber SS, Tocco G, Shors TJ, Thompson RF (1991) Activation of immediate early genes after acute stress. Neuroreport 2(1):17–20

    Article  CAS  PubMed  Google Scholar 

  24. Morgan JI, Cohen DR, Hempstead JL, Curran T (1987) Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237(4811):192–197

    Article  CAS  PubMed  Google Scholar 

  25. Nestler EJ (2015) FosB: a transcriptional regulator of stress and antidepressant responses. Eur J Pharmacol 753:66–72. doi:10.1016/j.ejphar.2014.10.034

    Article  CAS  PubMed  Google Scholar 

  26. Sheng M, Greenberg ME (1990) The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4(4):477–485

    Article  CAS  PubMed  Google Scholar 

  27. Veyrac A, Besnard A, Caboche J, Davis S, Laroche S (2014) The transcription factor Zif268/Egr1, brain plasticity, and memory. Prog Mol Biol Transl Sci 122:89–129. doi:10.1016/B978-0-12-420170-5.00004-0

    Article  CAS  PubMed  Google Scholar 

  28. Gallitano-Mendel A, Izumi Y, Tokuda K, Zorumski CF, Howell MP, Muglia LJ, Wozniak DF, Milbrandt J (2007) The immediate early gene early growth response gene 3 mediates adaptation to stress and novelty. Neuroscience 148(3):633–643. doi:10.1016/j.neuroscience.2007.05.050

    Article  CAS  PubMed  Google Scholar 

  29. Gallitano-Mendel A, Wozniak DF, Pehek EA, Milbrandt J (2008) Mice lacking the immediate early gene Egr3 respond to the anti-aggressive effects of clozapine yet are relatively resistant to its sedating effects. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 33(6):1266–1275. doi:10.1038/sj.npp.1301505

    Article  CAS  Google Scholar 

  30. McQuade JM, Tamashiro KL, Wood GE, Herman JP, McEwen BS, Sakai RR, Zhang J, Xu M (2006) Deficient hippocampal c-fos expression results in reduced anxiety and altered response to chronic stress in female mice. Neurosci Lett 403(1–2):125–130. doi:10.1016/j.neulet.2006.04.022

    Article  CAS  PubMed  Google Scholar 

  31. Minatohara K, Akiyoshi M, Okuno H (2015) Role of immediate-early genes in synaptic plasticity and neuronal ensembles underlying the memory trace. Front Mol Neurosci 8:78. doi:10.3389/fnmol.2015.00078

    PubMed  Google Scholar 

  32. Ohnishi YN, Ohnishi YH, Hokama M, Nomaru H, Yamazaki K, Tominaga Y, Sakumi K, Nestler EJ et al (2011) FosB is essential for the enhancement of stress tolerance and antagonizes locomotor sensitization by DeltaFosB. Biol Psychiatry 70(5):487–495. doi:10.1016/j.biopsych.2011.04.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ohnishi YN, Ohnishi YH, Vialou V, Mouzon E, LaPlant Q, Nishi A, Nestler EJ (2015) Functional role of the N-terminal domain of DeltaFosB in response to stress and drugs of abuse. Neuroscience 284:165–170. doi:10.1016/j.neuroscience.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  34. Valjent E, Aubier B, Corbille AG, Brami-Cherrier K, Caboche J, Topilko P, Girault JA, Herve D (2006) Plasticity-associated gene Krox24/Zif268 is required for long-lasting behavioral effects of cocaine. The Journal of neuroscience: the official journal of the Society for Neuroscience 26(18):4956–4960. doi:10.1523/JNEUROSCI.4601-05.2006

    Article  CAS  Google Scholar 

  35. Vialou V, Maze I, Renthal W, LaPlant QC, Watts EL, Mouzon E, Ghose S, Tamminga CA et al (2010) Serum response factor promotes resilience to chronic social stress through the induction of DeltaFosB. The Journal of neuroscience: the official journal of the Society for Neuroscience 30(43):14585–14592. doi:10.1523/JNEUROSCI.2496-10.2010

    Article  CAS  Google Scholar 

  36. Knoll B, Nordheim A (2009) Functional versatility of transcription factors in the nervous system: the SRF paradigm. Trends Neurosci 32(8):432–442

    Article  PubMed  Google Scholar 

  37. Kuzniewska B, Nader K, Dabrowski M, Kaczmarek L, Kalita K (2015) Adult deletion of SRF increases epileptogenesis and decreases activity-induced gene expression. Mol Neurobiol. doi:10.1007/s12035-014-9089-7

    PubMed  PubMed Central  Google Scholar 

  38. Parkitna JR, Bilbao A, Rieker C, Engblom D, Piechota M, Nordheim A, Spanagel R, Schutz G (2010) Loss of the serum response factor in the dopamine system leads to hyperactivity. FASEB J 24(7):2427–2435. doi:10.1096/fj.09-151423

    Article  CAS  PubMed  Google Scholar 

  39. Ramanan N, Shen Y, Sarsfield S, Lemberger T, Schutz G, Linden DJ, Ginty DD (2005) SRF mediates activity-induced gene expression and synaptic plasticity but not neuronal viability. Nat Neurosci 8(6):759–767

    Article  CAS  PubMed  Google Scholar 

  40. Stritt C, Stern S, Harting K, Manke T, Sinske D, Schwarz H, Vingron M, Nordheim A et al (2009) Paracrine control of oligodendrocyte differentiation by SRF-directed neuronal gene expression. Nat Neurosci 12(4):418–427

    Article  CAS  PubMed  Google Scholar 

  41. Etkin A, Alarcon JM, Weisberg SP, Touzani K, Huang YY, Nordheim A, Kandel ER (2006) A role in learning for SRF: deletion in the adult forebrain disrupts LTD and the formation of an immediate memory of a novel context. Neuron 50(1):127–143

    Article  CAS  PubMed  Google Scholar 

  42. Johnson AW, Crombag HS, Smith DR, Ramanan N (2011) Effects of serum response factor (SRF) deletion on conditioned reinforcement. Behav Brain Res 220(2):312–318. doi:10.1016/j.bbr.2011.02.015

    Article  CAS  PubMed  Google Scholar 

  43. Alberti S, Krause SM, Kretz O, Philippar U, Lemberger T, Casanova E, Wiebel FF, Schwarz H et al (2005) Neuronal migration in the murine rostral migratory stream requires serum response factor. Proc Natl Acad Sci U S A 102(17):6148–6153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nava N, Treccani G, Alabsi A, Kaastrup Mueller H, Elfving B, Popoli M, Wegener G, Nyengaard JR (2015) Temporal dynamics of acute stress-induced dendritic remodeling in medial prefrontal cortex and the protective effect of desipramine. Cereb Cortex. doi:10.1093/cercor/bhv254

    Google Scholar 

  45. Anastasiadou S, Liebenehm S, Sinske D, Meyer zu Reckendorf C, Moepps B, Nordheim A, Knoll B (2015) Neuronal expression of the transcription factor serum response factor modulates myelination in a mouse multiple sclerosis model. Glia 63(6):958–976. doi:10.1002/glia.22794

    Article  PubMed  Google Scholar 

  46. Fuchs H, Gailus-Durner V, Adler T, Aguilar-Pimentel JA, Becker L, Calzada-Wack J, Da Silva-Buttkus P, Neff F et al (2011) Mouse phenotyping. Methods 53(2):120–135. doi:10.1016/j.ymeth.2010.08.006

    Article  CAS  PubMed  Google Scholar 

  47. Gailus-Durner V, Fuchs H, Adler T, Aguilar Pimentel A, Becker L, Bolle I, Calzada-Wack J, Dalke C et al (2009) Systemic first-line phenotyping. Methods Mol Biol 530:463–509. doi:10.1007/978-1-59745-471-1_25

    Article  CAS  PubMed  Google Scholar 

  48. Garrett L, Lie DC, Hrabe de Angelis M, Wurst W, Holter SM (2012) Voluntary wheel running in mice increases the rate of neurogenesis without affecting anxiety-related behaviour in single tests. BMC Neurosci 13:61. doi:10.1186/1471-2202-13-61

    Article  PubMed  PubMed Central  Google Scholar 

  49. Holter SM, Stromberg M, Kovalenko M, Garrett L, Glasl L, Lopez E, Guide J, Gotz A et al (2013) A broad phenotypic screen identifies novel phenotypes driven by a single mutant allele in Huntington’s disease CAG knock-in mice. PLoS One 8(11):e80923. doi:10.1371/journal.pone.0080923

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zimprich A, Garrett L, Deussing JM, Wotjak CT, Fuchs H, Gailus-Durner V, de Angelis MH, Wurst W et al (2014) A robust and reliable non-invasive test for stress responsivity in mice. Front Behav Neurosci 8:125. doi:10.3389/fnbeh.2014.00125

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wall PM, Blanchard RJ, Yang M, Blanchard DC (2003) Infralimbic D2 receptor influences on anxiety-like behavior and active memory/attention in CD-1 mice. Prog Neuro-Psychopharmacol Biol Psychiatry 27(3):395–410. doi:10.1016/S0278-5846(02)00356-1

    Article  CAS  Google Scholar 

  52. Rathkolb B, Hans W, Prehn C, Fuchs H, Gailus-Durner V, Aigner B, Adamski J, Wolf E et al (2013) Clinical chemistry and other laboratory tests on mouse plasma or serum. Current protocols in mouse biology 3(2):69–100. doi:10.1002/9780470942390.mo130043

    Article  PubMed  Google Scholar 

  53. Rozman J, Klingenspor M, Hrabe de Angelis M (2014) A review of standardized metabolic phenotyping of animal models. Mammalian genome: official journal of the International Mammalian Genome Society 25(9–10):497–507. doi:10.1007/s00335-014-9532-0

    Article  Google Scholar 

  54. Nelson JD, Denisenko O, Bomsztyk K (2006) Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc 1(1):179–185

    Article  CAS  PubMed  Google Scholar 

  55. Oliveras I, Rio-Alamos C, Canete T, Blazquez G, Martinez-Membrives E, Giorgi O, Corda MG, Tobena A et al (2015) Prepulse inhibition predicts spatial working memory performance in the inbred Roman high- and low-avoidance rats and in genetically heterogeneous NIH-HS rats: relevance for studying pre-attentive and cognitive anomalies in schizophrenia. Front Behav Neurosci 9:213. doi:10.3389/fnbeh.2015.00213

    Article  PubMed  PubMed Central  Google Scholar 

  56. Meyer zu Reckendorf C, Anastasiadou S, Bachhuber F, Franz-Wachtel M, Macek B, Knoll B (2016) Proteomic analysis of SRF associated transcription complexes identified TFII-I as modulator of SRF function in neurons. Eur J Cell Biol 95(1):42–56. doi:10.1016/j.ejcb.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  57. Bamburg JR, Bernstein BW (2010) Roles of ADF/cofilin in actin polymerization and beyond. F1000 Biol Rep 2:62. doi:10.3410/B2-62

    PubMed  PubMed Central  Google Scholar 

  58. Fairchild G (2012) Hypothalamic-pituitary-adrenocortical axis function in attention-deficit hyperactivity disorder. Curr Top Behav Neurosci 9:93–111. doi:10.1007/7854_2010_101

    Article  CAS  PubMed  Google Scholar 

  59. Kellendonk C, Gass P, Kretz O, Schutz G, Tronche F (2002) Corticosteroid receptors in the brain: gene targeting studies. Brain Res Bull 57(1):73–83

    Article  CAS  PubMed  Google Scholar 

  60. Tronche F, Kellendonk C, Kretz O, Gass P, Anlag K, Orban PC, Bock R, Klein R et al (1999) Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet 23(1):99–103

    Article  CAS  PubMed  Google Scholar 

  61. Revest JM, Di Blasi F, Kitchener P, Rouge-Pont F, Desmedt A, Turiault M, Tronche F, Piazza PV (2005) The MAPK pathway and Egr-1 mediate stress-related behavioral effects of glucocorticoids. Nat Neurosci 8(5):664–672. doi:10.1038/nn1441

    Article  CAS  PubMed  Google Scholar 

  62. Wong TP, Howland JG, Robillard JM, Ge Y, Yu W, Titterness AK, Brebner K, Liu L et al (2007) Hippocampal long-term depression mediates acute stress-induced spatial memory retrieval impairment. Proc Natl Acad Sci U S A 104(27):11471–11476. doi:10.1073/pnas.0702308104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jones MW, Errington ML, French PJ, Fine A, Bliss TV, Garel S, Charnay P, Bozon B et al (2001) A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nat Neurosci 4(3):289–296. doi:10.1038/85138

    Article  CAS  PubMed  Google Scholar 

  64. Poirier R, Cheval H, Mailhes C, Charnay P, Davis S, Laroche S (2007) Paradoxical role of an Egr transcription factor family member, Egr2/Krox20, in learning and memory. Front Behav Neurosci 1:6. doi:10.3389/neuro.08.006.2007

    Article  PubMed  PubMed Central  Google Scholar 

  65. Baumgartel K, Genoux D, Welzl H, Tweedie-Cullen RY, Koshibu K, Livingstone-Zatchej M, Mamie C, Mansuy IM (2008) Control of the establishment of aversive memory by calcineurin and Zif268. Nat Neurosci 11(5):572–578. doi:10.1038/nn.2113

    Article  PubMed  Google Scholar 

  66. Bozon B, Davis S, Laroche S (2003) A requirement for the immediate early gene zif268 in reconsolidation of recognition memory after retrieval. Neuron 40(4):695–701

    Article  CAS  PubMed  Google Scholar 

  67. Maddox SA, Monsey MS, Schafe GE (2011) Early growth response gene 1 (Egr-1) is required for new and reactivated fear memories in the lateral amygdala. Learn Mem 18(1):24–38. doi:10.1101/lm.1980211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vialou V, Robison AJ, Laplant QC, Covington HE 3rd, Dietz DM, Ohnishi YN, Mouzon E, Rush AJ 3rd et al (2010) DeltaFosB in brain reward circuits mediates resilience to stress and antidepressant responses. Nat Neurosci 13(6):745–752. doi:10.1038/nn.2551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gutierrez-Mecinas M, Trollope AF, Collins A, Morfett H, Hesketh SA, Kersante F, Reul JM (2011) Long-lasting behavioral responses to stress involve a direct interaction of glucocorticoid receptors with ERK1/2-MSK1-Elk-1 signaling. Proc Natl Acad Sci U S A 108(33):13806–13811. doi:10.1073/pnas.1104383108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Goodson M, Rust MB, Witke W, Bannerman D, Mott R, Ponting CP, Flint J (2012) Cofilin-1: a modulator of anxiety in mice. PLoS Genet 8(10):e1002970. doi:10.1371/journal.pgen.1002970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zimmermann AM, Jene T, Wolf M, Gorlich A, Gurniak CB, Sassoe-Pognetto M, Witke W, Friauf E et al (2015) Attention-deficit/hyperactivity disorder-like phenotype in a mouse model with impaired actin dynamics. Biol Psychiatry 78(2):95–106. doi:10.1016/j.biopsych.2014.03.011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the GMC technicians, the GMC animal caretaker team, and Daniela Sinske for expert technical assistance.

B.K. is supported by the Deutsche Forschungsgemeinschaft (DFG) through SFB1149, an Ulm University and Bundeswehrkrankenhaus research initiative, and the Schram, Gottschalk and Gemeinnützige Hertie foundation.

This work has also been funded by the German Federal Ministry of Education and Research to the GMC (Infrafrontier grant 01KX1012), by the Helmholtz Alliance ICEMED—Imaging and Curing Environmental Metabolic Diseases, through the Initiative and Network Fund of the Helmholtz Association, by the Helmholtz Portfolio Theme “Metabolic Dysfunction and Common Disease,” and by the DFG grant “DJ-1 Linked Neurodegeneration Pathways in New Mouse Models of Parkinson’s Disease” (WU 164/5-1).

Author Contributions

A.Z., G.M., C.M.R., S.A., P.F., L.G., S.M.H., L.B, J.R., C.P., B.R., and K.M. conducted experiments. W.W., T.K., M.K., J.A., E.W., R.B., H.F., V.G.D., and M.H.A. supervised experiments. B.K. supervised and designed experiments and wrote the paper.

The manuscript is accompanied by Additional material:

Supplemental Figs. (S1S8) Supplement with detailed materials and methods and supplemental references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Knöll.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Annemarie Zimprich and Gabi Mroz contributed equally to this work.

Electronic Supplementary Material

ESM 1

(PDF 2525 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimprich, A., Mroz, G., Meyer zu Reckendorf, C. et al. Serum Response Factor (SRF) Ablation Interferes with Acute Stress-Associated Immediate and Long-Term Coping Mechanisms. Mol Neurobiol 54, 8242–8262 (2017). https://doi.org/10.1007/s12035-016-0300-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0300-x

Keywords

Navigation