Skip to main content
Log in

A mixed ploidy natural population of Amorphophallus muelleri provides an opportunity to trace the evolution of Amorphophallus karyotype

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Amorphophallus, a perennial herb belongs to the family Araceae, and is widely distributed in Asia and Africa. As an agricultural crop, it has been cultivated and consumed for ~2000 years in China. Previous studies have found that there are chromosome number and ploidy changes in this genus, but there are a few reports on the evolution of different karyotypes. For this study, we collected 37 samples of a wild population of Amorphophallus muelleri from Myanmar and analysed their karyotypes. The karyotype analysis showed that it is a population with mixed chromosome numbers and ploidy, with four karyotypes of 2n = 24, 26, 28 and 39. Combining the results of this study with previous literature, we speculate that karyotypes with 2n = 26 may be the common ancestor, and further the other three karyotypes were evolved from this by various ways. As far as we know, this is the first attempt to put forward the hypothesis of the evolution of those four karyotypes together. On the other hand, by using inter-simple sequence repeat marker-based unweighted pair group method with arithmetic mean cluster analysis, we found that these individuals of four karyotypes can be divided into four corresponding categories, indicating that they have been differentiated at the genome, providing a theoretical basis for future use of these wild germplasm resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Anil S. R., Beevy S. S. and Siril E. A. 2014 Cytotaxonomic investigations to assess diversity and evolution in Amorphophallus Blume ex Decne. (Araceae). Nucleus 57, 189–201.

    Article  Google Scholar 

  • Arano H. and Nakamura T. 1964 Cytological studies in subfamily Carduoideae (Compositae) of Japan XV. Bot Mag Tokyo. 77, 54–58.

    Article  Google Scholar 

  • Brandham P. E. and Chauhan K. P. S. 1985 Chromosome and DNA variation in Amorphophallus (Araceae). Kew Bull. 40, 745–758.

    Article  Google Scholar 

  • Camin J. H. and Sokal R. R. 1965 A method for deducing branching sequences in phylogeny. Evolution 19, 311–326.

    Article  Google Scholar 

  • Chen X., Yuan L. Q., Li L. J., Lv Y., Chen P. F. and Pan L. 2017 Suppression of gastric cancer by extract from the tuber of amorphophallus konjac via induction of apoptosis and autophagy. Oncol. Rep. 38, 1051–1058.

    Article  CAS  PubMed  Google Scholar 

  • Devaraj R. D., Reddy C. K. and Xu B. 2019 Health-promoting effects of konjac glucomannan and its practical applications: A critical review. Int. J. Biol. Macromol. 126, 273–281.

    Article  CAS  PubMed  Google Scholar 

  • Dey Y. N., Wanjari M. M., Kumar D., Lomash V. and Jadhav A. D. 2016 Curative effect of Amorphophallus paeoniifolius tuber on experimental hemorrhoids in rats. J. Ethnopharmacol. 192, 183–191.

    Article  PubMed  Google Scholar 

  • Eichler E. E. and Sankoff D. 2003 Structural dynamics of eukaryotic chromosome evolution. Science 301, 793–797.

    Article  CAS  PubMed  Google Scholar 

  • Felix L. P. and Guerra M. 2010 Variation in chromosome number and the basic number of subfamily Epidendroideae (Orchidaceae). Bot. J. Linn. Soc. 163, 234–278.

    Article  Google Scholar 

  • Gao Y., Yin S., Yang H., Wu L. and Yan Y. 2018 Genetic diversity and phylogenetic relationships of seven Amorphophallus species in southwestern China revealed by chloroplast DNA sequences. Mitochondrial DNA A DNA Mapp. Seq. Anal. 29, 679–686.

    CAS  Google Scholar 

  • Gholave A. R., Pawar K. D., Yadav S. R., Bapat V. A. and Jadhav J. P. 2017 Reconstruction of molecular phylogeny of closely related Amorphophallus species of India using plastid DNA marker and fingerprinting approaches. Physiol. Mol. Biol. Plant 23, 155–167.

    Article  CAS  Google Scholar 

  • Gholave A. R., Lekhak M. M. and Yadav S. R. 2020 Comparative karyological analysis of Indian Amorphophallus (Araceae). Plant Biosyst. 154, 806–813.

    Article  Google Scholar 

  • Harmayani E., Aprilia V. and Marsono Y. 2014 Characterization of glucomannan from Amorphophallus oncophyllus and its prebiotic activity in vivo. Carbohydr. Polym. 112, 475–479.

    Article  CAS  PubMed  Google Scholar 

  • Hashizume T., Shimamoto I. and Hiral M. 2003 Construction of a linkage map and QTL analysis of horticultural traits for watermelon [Citrullus lanatus (THUNB.) MATSUM & NAKAI] using RAPD, RFLP and ISSR markers. Theor. Appl. Genet. 106, 779–785.

    Article  CAS  PubMed  Google Scholar 

  • Hetterscheid W. and Bogner J. 1999 Notes on the genus Amorphophallus (Araceae) 10. Revision of the endemic Amorphophallus species of Madagascar. Bot. Jahrbücher. 121, 1–17.

    Google Scholar 

  • Jian W., Siu K. C. and Wu J. Y. 2015 Effects of pH and temperature on colloidal properties and molecular characteristics of Konjac glucomannan. Carbohydr. Polym. 134, 285–292.

    Article  CAS  PubMed  Google Scholar 

  • Kite G. C. and Hetterscheid W. L. A. 2017 Phylogenetic trends in the evolution of inflorescence odours in Amorphophallus. Phytochemistry 142, 126–142.

    Article  CAS  PubMed  Google Scholar 

  • Kolar F., Certner M., Suda J., Schonswetter P. and Husband B. C. 2017 Mixed-ploidy species: progress and opportunities in polyploid research. Trends Plant Sci. 22, 1041–1055.

    Article  CAS  PubMed  Google Scholar 

  • Kreiner J. M., Kron P. and Husband B. C. 2017 Frequency and maintenance of unreduced gametes in natural plant populations: associations with reproductive mode, life history and genome size. New Phytol. 214, 879–889.

    Article  CAS  PubMed  Google Scholar 

  • Krishnan R., Magoon M. L. and Bai K. V. 2011 Karyological studies in Amorphophallus campanulatus. Genome 12, 187–196.

    Google Scholar 

  • Leven A. 1964 Nomenclature for centromeric position on chromosomes. Hereditas 52, 201–220.

    Article  Google Scholar 

  • Li M. and Chen R. 1985 A suggestion on the standardization of karyotype analysis in plants. J. Wuhan Bot. Res. 3, 297–302.

    Google Scholar 

  • Liu E., Yang C., Liu J., Jin S., Harijati N., Hu Z. et al. 2019 Comparative analysis of complete chloroplast genome sequences of four major Amorphophallus species. Sci. Rep-UK. 9, 809.

    Article  Google Scholar 

  • Liu L., Ma X., Wei J., Qin J. and Mo C. 2011 The first genetic linkage map of Luohanguo (Siraitia grosvenorii) based on ISSR and SRAP markers. Genome 54, 19–25.

    Article  CAS  PubMed  Google Scholar 

  • Marchant C. J. 1971 Chromosome variation in Araceae III: Philodendreae to Pythonieae. Kew Bull. 25, 323–329.

    Article  Google Scholar 

  • Marchant C. J. and Brighton C. A. 1974 Cytological diversity and triploid frequency in a complex population of Ranunculus ficaria L. Ann. Bot. 38, 7–15.

    Article  Google Scholar 

  • Niu Y. 2005 The germplasm resources of Amorphophallus rivieri Durieu: a review. Southwest Hort. 27, 634–638.

    Google Scholar 

  • Niu Y., Zhang S., Wang Z. and Liu P. 2005 Amorphophallus resources in China. Southwest Hort. 33, 22–24.

    Google Scholar 

  • Paniel S., Marhold K., Filová B. and Zozomová-Lihová J. 2011 Genetic and morphological variation in the diploid–polyploid Alyssum montanum in Central Europe: taxonomic and evolutionary considerations. Plant Syst. Evol. 294, 1–25.

    Article  Google Scholar 

  • Passamonti M., Mantovani B. and Scali V. 2004 Phylogeny and karyotype evolution of the Iberian Leptynia attenuata species complex (Insecta Phasmatodea). Mol. Phylogenet. Evol. 30, 87–96.

    Article  CAS  PubMed  Google Scholar 

  • Qiao W., Jian W. and Geng Z. 2011 Characteristics of Konjac Glucomannan (KGM) in A. bulbifer compared with that in A. rivieri and A. albus. Adv. Mater. Res. 236–238, 2045–2052.

    Google Scholar 

  • Ramachandran K. 1977 Karyological studies on four South Indian species of Amorphophallus. Cytologia. 42, 645–652.

    Article  Google Scholar 

  • Ramsey J. 2007 Unreduced gametes and neopolyploids in natural populations of Achillea borealis (Asteraceae). Heredity (Edinb). 98, 143–150.

    Article  CAS  PubMed  Google Scholar 

  • Sabara H. A., Kron P. and Husband B. C. 2013 Cytotype coexistence leads to triploid hybrid production in a diploid–tetraploid contact zone of Chamerion angustifolium (Onagraceae). Am. J. Bot. 100, 962–970.

    Article  PubMed  Google Scholar 

  • Shete C. C., Wadkar S. S., Gaikwad N. B. and Paul K. S. 2015 Cytological studies in some members of Amorphophallus from western ghats of Maharashtra. J. Cytol. Genet. 16, 17–24.

    Google Scholar 

  • Stebbins G. L. 1971 Chromosomal evolution in higher plants. Edward Arnold Publisher, London.

    Google Scholar 

  • Subramanian D. and Munian M. 1988 Cytotaxonomical studies in South Indian Araceae. Cytologia 53, 59–66.

    Article  Google Scholar 

  • Tester R. F. and Al-Ghazzewi F. H. 2016 Beneficial health characteristics of native and hydrolysed konjac (Amorphophallus konjac) glucomannan. J. Sci. Food Agric. 96, 3283–3291.

    Article  CAS  PubMed  Google Scholar 

  • Thompson J. D. and Lumaret R. 1992 The evolutionary dynamics of polyploid plants: origins, establishment and persistence. Trends Ecol. Evol. 7, 302–307.

    Article  CAS  PubMed  Google Scholar 

  • Tracy L. B. and Brian C. H. 2001 Fecundity and offspring ploidy in matings among diploid, triploid and tetraploid Chamerion angustifolium (Onagraceae): consequences for tetraploid establishment. Heredity 87, 573–583.

    Article  Google Scholar 

  • Travenzoli N. M., Cardoso D. C., Werneck H. A., Fernandes-Salomao T. M., Tavares M. G. and Lopes D. M. 2019 The evolution of haploid chromosome numbers in Meliponini. PLoS One 14, e0224463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L., Wang L., Gong Y., Dai W., Wang Y., Zhu X. et al. 2012 Genetic linkage map construction and QTL mapping of cadmium accumulation in radish (Raphanus sativus L.). Theor. Appl. Genet. 125, 659–670.

    Article  CAS  PubMed  Google Scholar 

  • Zalewski B. M., Chmielewska A. and Szajewska H. 2015 The effect of glucomannan on body weight in overweight or obese children and adults: a systematic review of randomized controlled trials. Nutrition 31, 437–442.

    Article  CAS  PubMed  Google Scholar 

  • Zhang F. 2014 Karyotype study and ISSR analysis of genetic relationship of Amorphophallus tuberosus. Southwest University.

  • Zhu F. 2018 Modifications of konjac glucomannan for diverse applications. Food Chem. 256, 419–426.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank Hubei Agricultural Science and Technology Innovation Action Project for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Surong Jin or Zhongli Hu.

Additional information

Corresponding editor: H. A. Ranganath

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., She, X., Liu, E. et al. A mixed ploidy natural population of Amorphophallus muelleri provides an opportunity to trace the evolution of Amorphophallus karyotype. J Genet 100, 10 (2021). https://doi.org/10.1007/s12041-020-01255-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-020-01255-1

Keywords

Navigation