Skip to main content
Log in

Lateral transfer of organophosphate degradation (opd) genes among soil bacteria: mode of transfer and contributions to organismal fitness

  • Review Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Genes encoding structurally independent phosphotriesterases (PTEs) are identified in soil bacteria. These pte genes, often identified on mobilizable and self-transmissible plasmids are organized as mobile genetic elements. Their dissemination through lateral gene transfer is evident due to the detection of identical organophosphate degradation genes among soil bacteria with little or no taxonomic relationship. Convergent evolution of PTEs provided selective advantages to the bacterial strain as they convert toxic phosphotriesters (PTs) into a source of phosphate. The residues of organophosphate (OP) compounds that accumulate in a soil are proposed to contribute to the evolution of PTEs through substrate-assisted gain-of-function. This review provides comprehensive information on lateral transfer of pte genes and critically examines proposed hypotheses on their evolution in the light of the short half-life of OPs in the environment. The review also proposes alternate factors that have possibly contributed to the evolution and lateral mobility of PTEs by taking into account their biology and analyses of pte genes in genomic and metagenomic databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali M., Naqvi T. A., Kanwal M., Rasheed F., Hameed A. and Ahmed S. 2012 Detection of the organophosphate degrading gene opdA in the newly isolated bacterial strain Bacillus pumilus W1. Ann. Microbiol. 62, 233–269.

    Article  CAS  Google Scholar 

  • Afriat-Jurnou L., Jackson C. J. and Tawfik D. S. 2012 Reconstructing a missing link in the evolution of a recently diverged phosphotriesterase by active-site loop remodeling. Biochemistry 51, 6047–6055.

    Article  CAS  Google Scholar 

  • Afriat L., Roodveldt C., Manco G. and Tawfik D. S. 2006 The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase. Biochemistry 45, 13677–13686.

    Article  CAS  Google Scholar 

  • Bergonzi C., Schwab M., Naik T., Daude D., Chabriere E. and Elias M. 2018 Structural and biochemical characterization of AaL, a quorum quenching lactonase with unusual kinetic properties. Sci. Rep. 8, 11262.

    Article  Google Scholar 

  • Chakka D., Gudla R., Madikonda A. K., Pandeeti E. V., Parthasarathy S., Nandavaram A. et al. 2015 The organophosphate degradation (opd) Island-borne esterase-induced metabolic diversion in Escherichia coli and its influence on p-Nitrophenol degradation. J. Biol. Chem. 290, 29920–29930.

    Article  CAS  Google Scholar 

  • Chaudhry G. R., Ali A. N. and Wheeler W. B. 1988 Isolation of a methyl parathion-degrading Pseudomonas sp. that possesses DNA homologous to the opd gene from a Flavobacterium sp. Appl. Environ. Microbiol. textbf 54, 288–293.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng T. C, DeFrank J. J. and Rastogi V. K. 1999 Alteromonas prolidase for organophosphorus G-agent decontamination. Chem. Biol. Interact. 119-120, 455–462.

    Article  Google Scholar 

  • Colin P. Y., Kintses B., Gielen F., Miton C. M., Fischer G., Mohamed M. F. et al. 2015 Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nat. Commun. 6, 10008.

    Article  CAS  Google Scholar 

  • Davidi D., Longo L. M., Jablonska J., Milo R. and Tawfik D. S. 2018 A Bird’s-Eye view of enzyme evolution: chemical, physicochemical, and physiological considerations. Chem. Rev. 118, 8786–8797.

    Article  CAS  Google Scholar 

  • Dong Y. J., Bartlam M., Sun L., Zhou Y. F., Zhang Z. P., Zhang C. G. et al. 2005 Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3. J. Mol. Biol. 353, 655–663.

    Article  CAS  Google Scholar 

  • Elias M. and Tawfik D. S. 2012 Divergence and convergence in enzyme evolution: parallel evolution of paraoxonases from quorum-quenching lactonases. J. Biol Chem. 287, 11–20.

    Article  CAS  Google Scholar 

  • Harper L. L., McDaniel C. S., Miller C. E. and Wild J. R. 1988 Dissimilar plasmids isolated from Pseudomonas diminuta MG and a Flavobacterium sp. (ATCC 27551) contain identical opd genes. Appl. Environ. Microbiol. 54, 2586–2589.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horne I., Harcourt R. L., Sutherland T. D., Russell R. J. and Oakeshott J. G. 2002a Isolation of a Pseudomonas monteilli strain with a novel phosphotriesterase. FEMS Microbiol. Lett. 206, 51–55.

    Article  CAS  Google Scholar 

  • Horne I., Sutherland T. D., Harcourt R. L., Russell R. J. and Oakeshott J. G. 2002b Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate. Appl. Environ. Microbiol. 68, 3371–3376

    Article  CAS  Google Scholar 

  • Horne I., Qiu X., Russell R. J. and Oakeshott J. G. 2003 The phosphotriesterase gene opdA in Agrobacterium radiobacter P230 is transposable. FEMS Microbiol. Lett. 222, 1–8.

    Article  CAS  Google Scholar 

  • Iyer R., Iken B. and Damania A. 2013 A comparison of organophosphate degradation genes and bioremediation applications. Environ. Microbiol. Rep. 5, 787–798.

    Article  CAS  Google Scholar 

  • Kawahara K, Tanaka A, Yoon J. and Yokota A. 2010 Reclassification of a parathione-degrading Flavobacterium sp. ATCC 27551 as Sphingobium fuliginis. J. Gen. Appl. Microbiol. 56, 249–255.

    Article  CAS  Google Scholar 

  • Khajamohiddin S., Babu P. S., Chakka D., Merrick M., Bhaduri A, Sowdhamini R. et al. 2006 A novel meta-cleavage product hydrolase from Flavobacterium sp. ATCC27551. Biochem. Biophys. Res. Commun. 351, 675–681.

    Article  CAS  Google Scholar 

  • Khersonsky O. and Tawfik D. S. 2010 Enzyme promiscuity: a mechanistic and evolutionary perspective. Ann. Rev. Biochem. 79, 471–505.

    Article  CAS  Google Scholar 

  • Liu H., Zhang J. J., Wang S. J., Zhang X. E. and Zhou N. Y. 2005 Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. strain WBC-3. Biochem. Biophy. Res. Commun. 334, 1107–1114.

    Article  CAS  Google Scholar 

  • Mandrich L. and Manco G. 2009 Evolution in the amidohydrolase superfamily: substrate-assisted gain of function in the E183K mutant of a phosphotriesterase-like metal-carboxylesterase. Biochemistry 48, 5602–5612.

    Article  CAS  Google Scholar 

  • McDaniel C. S. and Wild J. R. 1988 Detection of organophosphorus pesticide detoxifying bacterial colonies, using UV-photography of parathion-impregnated filters. Arch. Environ. Contamin. Toxicol. 17, 189–194.

    Article  CAS  Google Scholar 

  • Moran N. A. 2002 Microbial minimalism: genome reduction in bacterial pathogens. Cell. 108, 583–586.

    Article  CAS  Google Scholar 

  • Mulbry W. W., Kearney P. C., Nelson J. O. and Karns J. S. 1987 Physical comparison of parathion hydrolase plasmids from Pseudomonas diminuta and Flavobacterium sp. Plasmid. 18, 173–177.

    Article  CAS  Google Scholar 

  • Mulbry W. W. and Karns J. S. 1989 Purification and characterization of three parathion hydrolases from gram-negative bacterial strains. Appl. Environ. Microbiol. 55, 289–293.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munnecke D. M. and Hsieh D. P. 1974 Microbial decontamination of parathion and p-nitrophenol in aqueous media. Appl. Microbiol. 28, 212–217.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nojiri H., Shintani M. and Omori T. 2004 Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity. Appl. Microbiol. Biotechnol. 64, 154–174.

    Article  CAS  Google Scholar 

  • Pandeeti E. V., Chakka D., Pandey J. P. and Siddavattam D. 2011 Indigenous organophosphate-degrading (opd) plasmid pCMS1 of Brevundimonas diminuta is self-transmissible and plays a key role in horizontal mobility of the opd gene. Plasmid 65, 226–231.

    Article  CAS  Google Scholar 

  • Pandeeti E. V., Longkumer T., Chakka D., Muthyala V. R., Parthasarathy S., Madugundu A. K. et al. 2012 Multiple mechanisms contribute to lateral transfer of an organophosphate degradation (opd) island in Sphingobium fuliginis ATCC 27551. G3 (Bethesda) 2, 1541–1554.

    Article  CAS  Google Scholar 

  • Pao S. S., Paulsen I. T. and Saier M. H., Jr. 1998 Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62, 1–34.

  • Parthasarathy S., Parapatla H., Nandavaram A., Palmer T. and Siddavattam D. 2016 Organophosphate hydrolase is a lipoprotein and interacts with Pi-specific transport system to facilitate growth of Brevundimonas diminuta using OP insecticide as source of phosphate. J. Biol. Chem. 291, 7774–7785.

    Article  CAS  Google Scholar 

  • Parthasarathy S., Gudla R. and Siddavattam D. 2017a Evolution of phosphotriesterases (PTEs): how bacteria can acquire new degradative functions. Proc. Indian Natn. Sci. Acad. 83, 865-875.

    Google Scholar 

  • Parthasarathy S., Parapatla H. and Siddavattam D. 2017b Topological analysis of the lipoprotein organophosphate hydrolase from Sphingopyxis wildii reveals a periplasmic localisation. FEMS Microbiol. Lett. 364.

  • Parthasarathy S., Azam S., Lakshman Sagar A., Narasimha Rao V, Gudla R., Parapatla H. et al. 2017c Genome-guided insights reveal organophosphate-degrading Brevundimonas diminuta as Sphingopyxis wildii and define its versatile metabolic capabilities and environmental adaptations. Genome Biol. Evol. 9, 77–81.

    CAS  PubMed  Google Scholar 

  • Purg M., Pabis A., Baier F., Tokuriki N., Jackson C and Kamerlin S. C. 2016 Probing the mechanisms for the selectivity and promiscuity of methyl parathion hydrolase. Philos. Trans. A Math. Phys. Eng. Sci. 374.

    Article  Google Scholar 

  • Puyet A., del Solar G. H. and Espinosa M. 1988 Identification of the origin and direction of replication of the broad-host-range plasmid pLS1. Nucleic Acids Res. 16, 115–133.

    Article  CAS  Google Scholar 

  • Rhoads M. K, Hauk P., Gupta V., Bookstaver M. L., Stephens K, Payne G. F. 2018 Modification and assembly of a versatile lactonase for bacterial quorum quenching. Molecules 23, 341.

    Article  Google Scholar 

  • Russell R. J., Scott C., Jackson C. J., Pandey R., Pandey G., Taylor M. C. et al 2011 The evolution of new enzyme function: lessons from xenobiotic metabolizing bacteria versus insecticide-resistant insects. Evol. Appl. 4, 225–248.

    Article  CAS  Google Scholar 

  • Serdar C. M., Gibson D. T., Munnecke D. M. and Lancaster J. H. 1982 Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta. Appl. Environ. Microbiol. 44, 246–249.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sethunathan N. and Yoshida T. 1973 A Flavobacterium sp. that degrades diazinon and parathion. Canadian J. Microbiol. 19, 873–875.

    Article  CAS  Google Scholar 

  • Siddavattam D., Khajamohiddin S., Manavathi B., Pakala S. B. and Merrick M. 2003 Transposon-like organization of the plasmid-borne organophosphate degradation (opd) gene cluster found in Flavobacterium sp. Appl. Environ. Microbiol. 69, 2533–2539.

    Article  Google Scholar 

  • Singh B., Kaur J. and Singh K. 2014 Microbial degradation of an organophosphate pesticide, malathion. Critical Rev. Microbiol. 40, 146–154.

    Article  CAS  Google Scholar 

  • Somara S. and Siddavattam D. 1995 Plasmid mediated organophosphate pesticide degradation by Flavobacterium balustinum. Biochem. Mol. Biol. Int. 36, 627–631.

    CAS  PubMed  Google Scholar 

  • Tan H. M. 1999 Bacterial catabolic transposons. Appl. Microbiol. Biotechnol. 51, 1–12.

    Article  CAS  Google Scholar 

  • Tawfik D. S. 2006 Biochemistry. Loop grafting and the origins of enzyme species. Science 311, 475–476.

    Article  CAS  Google Scholar 

  • Toscano M. D., Woycechowsky K. J. and Hilvert D. 2007 Minimalist active-site redesign: teaching old enzymes new tricks. Angewandte Chemie. 46, 3212–3236.

    Article  CAS  Google Scholar 

  • Wei M., Zhang J. J., Liu H., Wang S. J., Fu H. and Zhou N. Y. 2009 A transposable class I composite transposon carrying mph (methyl parathion hydrolase) from Pseudomonas sp. strain WBC-3. FEMS Microbiol. Lett. 292, 85–91.

    Article  CAS  Google Scholar 

  • Yang H., Carr P. D., McLoughlin S. Y., Liu J. W., Horne I., Qiu X et al. 2003 Evolution of an organophosphate-degrading enzyme: a comparison of natural and directed evolution. Protein Eng. 16, 135–145.

    Article  CAS  Google Scholar 

  • Zhang R., Cui Z., Zhang X., Jiang J., Gu J. D. and Li S. 2006 Cloning of the organophosphorus pesticide hydrolase gene clusters of seven degradative bacteria isolated from a methyl parathion contaminated site and evidence of their horizontal gene transfer. Biodegradation 17, 465–472.

    Article  CAS  Google Scholar 

  • Zhongli C., Shunpeng L. and Guoping F. 2001 Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl. Environ. Microbiol. 67, 4922–4925.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DS received research grants from CSIR and DST, New Delhi. Department of Animal Biology is funded through DST-FIST level-II. The School of Life Science received special assistance through DBT-BUILDER programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayananda Siddavattam.

Additional information

Corresponding editor: H. A. Ranganath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddavattam, D., Yakkala, H. & Samantarrai, D. Lateral transfer of organophosphate degradation (opd) genes among soil bacteria: mode of transfer and contributions to organismal fitness. J Genet 98, 23 (2019). https://doi.org/10.1007/s12041-019-1068-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-019-1068-3

Keywords

Navigation