Skip to main content
Log in

Detection of the organophosphate degrading gene opdA in the newly isolated bacterial strain Bacillus pumilus W1

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The toxicity of organophosphates to a wide range of organisms necessitates the study of their degradation. We designed a study to isolate an organophosphate-degrading bacterium and to detect the gene involved in the hydrolysis of organophosphates. The bacterial strain was isolated by the enrichment culture technique from organophosphate-contaminated soil, It was identified as Bacillus pumilus W1 based on its biochemical characteristics and found to be able to grow in the presence of methyl parathion (250 ppm). The organophosphate-degrading gene opdA was detected by colony PCR. The specific activity of the organophosphate-degrading enzyme OpdA was analyzed in a cell extract of the bacterial isolate and found to be 0.34 ± 0.14 IU mg-1 protein. The effect of different metals, including Mn2+, Mg2+, Co2+, and Zn2+, on the activity of OpdA was also determined; enzyme activity was enhanced by approximately a factor of 4.84 ± 0.39 in the presence of Mn2+. Degradation of p-nitrophenol was studied under aerobic conditions, and more than 70% p-nitrophenol was degraded within 24 h in the presence of glucose. This is the first report of an opdA gene in this specific B. pumilus strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ather N, Ara J, Khan EA, Sattar RA, Durrani R (2008) Acute organophosphate insecticide poisoning. J Surg Pak 13:71–74

    Google Scholar 

  • Bhadbhade BJ, Dhakephalkar PK, Sarnaik SS, Kanekar PP (2002) Plasmid-associated biodegradation of an organophosphorus pesticide, monocrotophos, by Pseudomonas mendocina. Biotechnol Lett 24:647–650

    Article  CAS  Google Scholar 

  • Bird SB, Sutherland TD, Gresham C, Oakeshott JG, Scott C, Eddleston M (2008) OpdA, a bacterial organophosphorus hydrolase, prevents lethality in rats after poisoning with highly toxic organophosphorus pesticide. Toxicology 247:88–92

    Article  PubMed  CAS  Google Scholar 

  • Bouyoucos GJ (1962) Hydrometer method improved for making particle and size analysis of soils. Agron J 54:464–465

    Article  Google Scholar 

  • Chaudhry GR, Ali AN, Wheeler WB (1988) Isolation of a methyl parathion-degrading Pseudomonas sp. that possess DNA homologous to the opd gene from a Flavobacterium sp. Appl Environ Microbiol 54:288–293

    PubMed  CAS  Google Scholar 

  • Cheng T-C, Harvey SP, Stroup AN (1993) Purification and properties of a highly active organophosphorus acid anhydrolase from Alteromonas undina. Appl Environ Microbiol 59:3138–3140

    PubMed  CAS  Google Scholar 

  • Dumas DP, Caldwell SR, Wild JR, Raushel FM (1989) Purification and properties of the phosphotriesterase from Pseudomonas diminuta. J Biol Chem 264:19659–19665

    PubMed  CAS  Google Scholar 

  • Fu G, Cui Z, Huang T, Li S (2004) Expression, purification, and characterization of a novel methyl parathion hydrolase. Protein Expr Purif 36:170–176

    Article  PubMed  CAS  Google Scholar 

  • Harcourt RL, Horne I, Sutherland TD, Hammock BD, Russell RJ (2002) Development of a simple and sensitive fluorimetric method for isolation of coumaphos-hydrolysing bacteria. Lett Appl Microbiol 34:263–268

    Article  PubMed  CAS  Google Scholar 

  • Harper LL, McDaniel CS, Miller CE, Wild JR (1988) Dissimilar plasmids isolated from Pseudomonas diminuta MG and a Flavobacterium sp. (ATCC 27551) contain Identical opd genes. Appl Environ Microbiol 54:2586–2589

    PubMed  CAS  Google Scholar 

  • Hart ADM (1993) Relationships between behavior and the inhibition of acetylcholinesterase in birds exposed to organophosphorus pesticides. Environ Toxicol Chem 12:321–336

    Article  CAS  Google Scholar 

  • Hong Q, Zhang Z, Hong Y, Lia S (2007) A microcosm study on bioremediation of fenitrothion-contaminated soil using Burkholderia sp. FDS-1. Int Biodeterior Biodegrad 59:55–61

    Article  CAS  Google Scholar 

  • Horne I, Sutherland TD, Harcourt RL, Russell RJ, Oakeshott JG (2002) Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate. Appl Environ Microbiol 68:3371–3376

    Article  PubMed  CAS  Google Scholar 

  • Jackson CJ, Carr PD, Kim H-K, Liu J-W, Herrald P, Mitic N, Schenk G, Smith CA, Ollis DL (2006) Anomalous scattering analysis of Agrobacterium radiobacter phosphotriesterase: the prominent role of iron in the heterobinuclear active site. Biochem J 397:501–508

    Article  PubMed  CAS  Google Scholar 

  • Karalliedde L, Senanayake N (1999) Organophosphorus insecticide poisoning. J Int Fed Clin Chem 11:1–9

    Google Scholar 

  • Kawahara J, Horikoshi R, Yamaguchi T, Kumagai K, Yanagisawa Y (2005) Air pollution and young children's inhalation exposure to organophosphorus pesticide in an agricultural community in Japan. Environ Int 31:1123–1132

    Article  PubMed  CAS  Google Scholar 

  • Keprasertsup C, Upatham ES, Sukhapanth N, Prempree P (2001) Degradation of methyl parathion in an aqueous medium by soil bacteria. Sci Asia 27:261–270

    Article  CAS  Google Scholar 

  • Khan SA, Hamayun M, Ahmed S (2006) Degradation of 4-aminophenol by newly isolated Pseudomonas sp. strain ST-4. Enzyme Microb Technol 38:10–13

    Article  CAS  Google Scholar 

  • Kitagawa W, Kimura N, Kamagata Y (2004) A novel p-nitrophenol degradation gene cluster from a gram-positive bacterium, Rhodococcus opacus SAO101. J Bacteriol 186:4894–4902

    Article  PubMed  CAS  Google Scholar 

  • Konstantinou IK, Hela DG, Albanis TA (2006) The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part 1. Review on occurrence and levels. Environ Pollut 141:555–570

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Zhang J-J, Wang S-J, Zhang X-E, Zhou N-Y (2005) Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. strain WBC-3. Biochem Biophys Res Commun 334:1107–1114

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • McDaniel CS, Harper LL, Wild JR (1988) Cloning and sequencing of a plasmid-borne gene (opd) encoding a phosphotriesterase. J Bacteriol 170:2306–2311

    PubMed  CAS  Google Scholar 

  • Mulbry WW, Karns JS (1989) Parathion hydrolase specified by the Flavobacterium opd gene: relationship between the gene and protein. J Bacteriol 171:6740–6746

    PubMed  CAS  Google Scholar 

  • Mulbry WW, Karns JS, Kearney PC, Nelson JO, McDaniel CS, Wild JR (1986) Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by southern hybridization with opd from Pseudomonas diminuta. Appl Environ Microbiol 51:926–930

    PubMed  CAS  Google Scholar 

  • Nelson LM (1982) Biologically-induced hydrolysis of parathion in soil: isolation of hydrolyzing bacteria. Soil Biol Biochem 14:219–222

    Article  CAS  Google Scholar 

  • Ningthoujam D (2005) Isolation and identification of a Brevibacterium linens strain degrading p-nitrophenol. Afr J Biotechnol 4:256–257

    CAS  Google Scholar 

  • Ortiz-Hernández ML, Sánchez-Salinas E (2010) Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in Mexico. Rev Int Contam Ambient 26:27–38

    Google Scholar 

  • Ortiz-Hernández ML, Monterrosas-Brisson M, Yánez-Ocampo G, Sánchez-Salinas E (2001) Biodegradation of methyl-parathion by bacteria isolated of agricultural soil. Rev Int Contam Ambient 17:147–155

    Google Scholar 

  • Pagliuca G, Serraino A, Gazzotti T, Zironi E, Borsari A, Rosmini R (2006) Organophosphorus pesticides residues in Italian raw milk. J Dairy Res 73:340–344

    Article  PubMed  CAS  Google Scholar 

  • Pakala SB, Gorla P, Pinjari AB, Krovidi RK, Baru R, Yanamandra M, Merrick M, Siddavattam D (2006) Biodegradation of methyl parathion and p-nitrophenol: evidence for the presence of a p-nitrophenol 2-hydroxylase in a Gram-negative Serratia sp. strain DS001. Appl Microbiol Biotechnol 73:1452–1462

    Article  PubMed  Google Scholar 

  • Pérez-Pérez FJ, Hanson ND (2002) Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 40:2153–2162

    Article  PubMed  Google Scholar 

  • Qiu X-H, Bai W-Q, Zhong Q-Z, Li M, He F-Q, Li B-T (2006) Isolation and characterization of a bacterial strain of the genus Ochrobactrum with methyl parathion mineralizing activity. J Appl Microbiol 101:986–994

    Article  PubMed  CAS  Google Scholar 

  • Qiu X, Zhong Q, Li M, Bai W, Li B (2007) Biodegradation of p-nitrophenol by methyl parathion-degrading Ochrobactrum sp. B2. Int Biodeterior Biodegrad 59:297–301

    Article  CAS  Google Scholar 

  • Qiu X, Wu P, Zhang H, Li M, Yan Z (2009) Isolation and characterization of Arthrobacter sp. HY2 capable of degrading a high concentration of p-nitrophenol. Bioresour Technol 100:5243–5248

    Article  PubMed  CAS  Google Scholar 

  • Raushel FM, Holden HM (2000) Phosphotriesterase: an enzyme in search of its natural substrate. Adv Enzymol Relat Areas Mol Biol 74:51–93

    PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Preparation of plasmid DNA by alkaline lysis with SDS: minipreparation. In: Sambrook J, Russell DW (eds) Molecular cloning a laboratory manual. Cold Spring Harbor Laboratory Press, New York, pp 32–34

    Google Scholar 

  • Scott C, Pandey G, Hartley CJ, Jackson CJ, Cheesman MJ, Taylor MC, Pandey R, Khurana JL, Teese M, Coppin CW, Weir KM, Jain RK, Lal R, Russell RJ, Oakeshott JG (2008) The enzymatic basis for pesticide bioremediation. Ind J Microbiol 48:65–79

    Article  CAS  Google Scholar 

  • Serdar CM, Gibson DT, Munnecke DM, Lancaster JH (1982) Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta. Appl Environ Microbiol 44:246–249

    PubMed  CAS  Google Scholar 

  • Sethunathan N, Yoshida T (1973) A Flavobacterium sp. that degrades diazinon and parathion. Can J Microbiol 19:873–875

    Article  PubMed  CAS  Google Scholar 

  • Sharmila M, Ramanand K, Sethunathan N (1989) Effect of yeast extract on the degradation of organophosphorus insecticides by soil enrichment and bacterial cultures. Can J Microbiol 35:1105–1110

    Article  CAS  Google Scholar 

  • Sing BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471

    Article  Google Scholar 

  • Sogorb MA, Vilanova E (2002) Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol Lett 128:215–228

    Article  PubMed  CAS  Google Scholar 

  • Walker A, Austin CR (2004) Effect of recent cropping history and herbicide use on the degradation rates of isoproturon in soils. Weed Res 44:5–11

    Article  CAS  Google Scholar 

  • Walker AW, Keasling JD (2002) Metabolic engineering of Pseudomonas putida for the utilization of parathion as a carbon and energy source. Biotechnol Bioeng 78:715–721

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Wu N, Guo J, Chu X, Tian J, Yao B, Fan Y (2008) Phytodegradation of organophosphorus compounds by transgenic plants expressing a bacterial organophosphorus hydrolase. Biochem Biophys Res Commun 365:453–458

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Liu N, Guo X, Qiao C (2006) Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil. FEMS Microbiol Lett 265:118–125

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Dong M, Yuan Y, Huang Y, Guo X, Qiao C (2007) Reductive transformation of parathion and methyl parathion by Bacillus sp. Biotechnol Lett 29:487–493

    Article  PubMed  Google Scholar 

  • Zaidi BR, Imam SH, Greene RV (1996) Accelerated biodegradation of high and low concentrations of p-nitrophenol (PNP) by bacterial inoculation in industrial wastewater: the role of inoculum size on acclimation period. Curr Microbiol 33:292–296

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Cui Z, Zhang X, Jiang J, Gu J-D, Shunpeng L (2006) Cloning of the organophosphorus pesticide hydrolase gene clusters of seven degradative bacteria isolated from a methyl parathion contaminated site and evidence of their horizontal gene transfer. Biodegradation 17:465–472

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Liu D, Xu H, Zhong Y, Yuan Y, Xong L, Li W (2009) Biodegradation of p-nitrophenol by Pseudomonas aeruginosa HS-D38 and analysis of metabolites with HPLC-ESI/MS. Int Biodeterior Biodegrad 63:1125–1129

    Article  CAS  Google Scholar 

  • Zhongli C, Shunpeng L, Guoping F (2001) Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl Environ Microbiol 67:4922–4925

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are deeply grateful to Mr. Nouman Rafique Mirza (Brandenburgische Technische Universität, Germany) for his assistance in writing the manuscript and Dr. Jamshaid Hussain (COMSATS Institute of Information Technology, Abbottabad, Pakistan) for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safia Ahmed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, M., Naqvi, T.A., Kanwal, M. et al. Detection of the organophosphate degrading gene opdA in the newly isolated bacterial strain Bacillus pumilus W1. Ann Microbiol 62, 233–239 (2012). https://doi.org/10.1007/s13213-011-0251-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-011-0251-4

Keywords

Navigation