Skip to main content
Log in

Models and mechanisms of repeat expansion disorders: a worm’s eye view

  • Review Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The inappropriate genetic expansion of various repetitive DNA sequences underlies over 20 distinct inherited diseases. The genetic context of these repeats in exons, introns and untranslated regions has played a major role in thinking about the mechanisms by which various repeat expansions might cause disease. Repeat expansions in exons are thought to give rise to expanded toxic protein repeats (i.e. polyQ). Repeat expansions in introns and UTRs (i.e. FXTAS) are thought to produce aberrant repeat-bearing RNAs that interact with and sequester a wide variety of essential proteins, resulting in cellular toxicity. However, a new phenomenon termed ‘repeat-associated nonAUG dependent (RAN) translation’ paints a new and unifying picture of how distinct repeat expansion-bearing RNAs might act as substrates for this noncanonical form of translation, leading to the production of a wide range of repeat sequence-specific-encoded toxic proteins. Here, we review how the model system Caenorhabditis elegans has been utilized to model many repeat disorders and discuss how RAN translation could be a previously unappreciated contributor to the toxicity associated with these different models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ashkenazi A., Bento C. F., Ricketts T., Vicinanza M., Siddiqi F., Pavel M. et al. 2017 Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature 545, 108–111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banez-Coronel M., Ayhan F., Tarabochia A. D., Zu T., Perez B. A., Tusi S. K. et al. 2015 RAN translation in Huntington disease. Neuron 88, 667–677.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bates E., Victor M., Jones A., Shi Y. and Hart A. C. 2006 Differential contributions of Caenorhabditis elegans histone deacetylases to Huntingtin polyglutamine toxicity. J. Neurosci. 26, 2833–2838.

  • Bird T. D. 1993 Myotonic dystrophy type 1. GeneReviews((R)), (ed. M. P. Adam, H. H. Ardinger, R. A. Pagon, S. E Wallace, L. J. H. Bean, K. Stephens and A. Amemiya). Seattle (WA).

  • Boeynaems S., Bogaert E., Michiels E., Gijselinck I., Sieben A., Jovicic A. et al. 2016 Drosophila screen connects nuclear transport genes to DPR pathology in c9ALS/FTD. Sci. Rep. 6, 20877.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brignull H. R., Moore F. E., Tang S. J. and Morimoto R. I. 2006 Polyglutamine proteins at the pathogenic threshold display neuron-specific aggregation in a pan-neuronal Caenorhabditis elegans model. J. Neurosci. 26, 7597–7606.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brook J. D., McCurrach M. E., Harley H. G., Buckler A. J., Church D., Aburatani H. et al. 1992 Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3’ end of a transcript encoding a protein kinase family member. Cell 69, 385.

    PubMed  CAS  Google Scholar 

  • Burgess R. W., Snutch T. P., Liu P., Wang X., Hao L., Saur T. et al. 2016 Forward genetic screen in Caenorhabditis elegans suggests F57A10.2 and acp-4 as suppressors of C9ORF72 related phenotypes. Mol. Neurosci. 9.

  • Cappellano G., Carecchio M., Fleetwood T., Magistrelli L., Cantello R., Dianzani U. et al. 2013 Immunity and inflammation in neurodegenerative diseases. Am. J. Neurodegener. Dis. 2, 89–107.

    PubMed  PubMed Central  Google Scholar 

  • Chen K.-Y., Pan H., Lin M.-J., Li Y.-Y., Wang L.-C., Wu Y.-C. et al. 2007. Length-dependent toxicity of untranslated CUG repeats on Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 352, 774–779.

    Article  PubMed  CAS  Google Scholar 

  • Christie N. T. M., Lee A. L., Fay H. G., Gray A. A. and Kikis E. A. 2014 Novel polyglutamine model uncouples proteotoxicity from aging. PLoS One 9, e96835.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chung D. W., Rudnicki D. D., Yu L. and Margolis R. L. 2011 A natural antisense transcript at the Huntington’s disease repeat locus regulates HTT expression. Hum. Mol. Genet. 20, 3467–3477.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cleary J. D. and Ranum L. P. 2014 Repeat associated non-ATG (RAN) translation: new starts in microsatellite expansion disorders. Curr. Opin. Genet. Dev. 26, 6–15.

    Article  PubMed  CAS  Google Scholar 

  • Colbert H. A. and Bargmann C. I. 1995 Odorant-specific adaptation pathways generate olfactory plasticity in C. elegans. Neuron. 14, 803–812.

    Article  PubMed  CAS  Google Scholar 

  • Cooper-Knock J., Shaw P. J. and Kirby J. 2014 The widening spectrum of C9ORF72-related disease; genotype/phenotype correlations and potential modifiers of clinical phenotype. Acta Neuropathol. 127, 333–345.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dalton J. C., Ranum L. P. W. and Day J. W. 1993 Myotonic Dystrophy Type 2. GeneReviews((R)), ((ed. M. P. Adam, H. H. Ardinger, R. A. Pagon, S. E Wallace, L. J. H Bean, K. Stephens and A. Amemiya). Seattle (WA).

  • Davidson Y. S., Barker H., Robinson A. C., Thompson J. C., Harris J., Troakes C. et al. 2014 Brain distribution of dipeptide repeat proteins in frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72. Acta Neuropathol. Commun. 2, 70.

    Article  PubMed  PubMed Central  Google Scholar 

  • DeJesus-Hernandez M., Mackenzie I. R., Boeve B. F., Boxer A. L., Baker M. and Rutherford N. J. et al. 2011 Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donnelly C. J., Zhang P. W., Pham J. T., Haeusler A. R., Mistry N. A., Vidensky S. et al. 2013 RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80, 415–428.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ewbank J. J. and Pujol N. 2016 Local and long-range activation of innate immunity by infection and damage in C. elegans. Curr. Opin. Immunol. 38, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Faber P. W., Alter J. R., MacDonald M. E. and Hart A. C. 1999 Polyglutamine-mediated dysfunction and apoptotic death of a Caenorhabditis elegans sensory neuron. Proc. Natl. Acad. Sci USA 96, 179–184.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fardghassemi Y., Tauffenberger A., Gosselin S. and Parker J. A. 2017 Rescue of ATXN3 neuronal toxicity in C. elegans by chemical modification of ER stress. Dis. Model. Mech. 10, 1465–1480.

    Article  PubMed  PubMed Central  Google Scholar 

  • Freibaum B. D., Lu Y., Lopez-Gonzalez R., Kim N. C., Almeida S., Lee K. H. et al. 2015 GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 525, 129–133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu Y. H., Pizzuti A., Fenwick Jr R. G., King J., Rajnarayan S., Dunne P. W. et al. 1992 An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255, 1256–1258.

    Article  PubMed  CAS  Google Scholar 

  • Galloway J. N. and Nelson D. L. 2009 Evidence for RNA-mediated toxicity in the fragile X-associated tremor/ataxia syndrome. Future Neurol. 4, 785.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gidalevitz T., Wang N., Deravaj T., Alexander-Floyd J. and Morimoto R. I. 2013 Natural genetic variation determines susceptibility to aggregation or toxicity in a C. elegans model for polyglutamine disease. BMC Biol. 11, 100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Green K. M., Glineburg M. R., Kearse M. G., Flores B. N., Linsalata A. E., Fedak S. J. et al. 2017 RAN translation at C9orf72-associated repeat expansions is selectively enhanced by the integrated stress response. Nat. Commun. 8, 2005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Green K. M., Linsalata A. E. and Todd P. K. 2016 RAN translation-What makes it run? Brain Res. 1647, 30–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haeusler A. R., Donnelly C. J., Periz G., Simko E. A., Shaw P. G., Kim M. S. et al. 2014 C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507, 195–200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hart A. C., Kass J., Shapiro J. E. and Kaplan J. M. 1999 Distinct signaling pathways mediate touch and osmosensory responses in a polymodal sensory neuron. J. Neurosci. 19, 1952–1958.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hautbergue G. M., Castelli L. M., Ferraiuolo L., Sanchez-Martinez A., Cooper-Knock J., Higginbottom A. et al. 2017 SRSF1-dependent nuclear export inhibition of C9ORF72 repeat transcripts prevents neurodegeneration and associated motor deficits. Nat. Commun. 8, 16063.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holmes S. E., O’Hearn E. E., McInnis M. G., Gorelick-Feldman D. A., Kleiderlein J. J., Callahan C. et al. 1999 Expansion of a novel CAG trinucleotide repeat in the 5’ region of PPP2R2B is associated with SCA12. Nat. Genet. 23, 391–392.

    Article  PubMed  CAS  Google Scholar 

  • Hsu A. L., Murphy C. T. and Kenyon C. 2003 Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300, 1142–1145.

    Article  PubMed  CAS  Google Scholar 

  • Ilieva H., Polymenidou M. and Cleveland D. W. 2009 Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J. Cell Biol. 187, 761–772.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ingram M. A., Orr H. T. and Clark H. B. 2012 Genetically engineered mouse models of the trinucleotide-repeat spinocerebellar ataxias. Brain Res. Bull 88, 33–42.

    Article  PubMed  CAS  Google Scholar 

  • Jeong H., Then F., Melia Jr T. J., Mazzulli J. R., Cui L., Savas J. N. et al. 2009 Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell 137, 60–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia H., Pallos J., Jacques V., Lau A., Tang B., Cooper A. et al. 2012 Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine-elicited phenotypes in model systems of Huntington’s disease. Neurobiol. Dis. 46, 351–361.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia K., Hart A. C. and Levine B. 2007. Autophagy genes protect against disease caused by polyglutamine expansion proteins in Caenorhabditis elegans. Autophagy 3, 21–25.

    Article  PubMed  CAS  Google Scholar 

  • Jovicic A., Mertens J., Boeynaems S., Bogaert E., Chai N., Yamada S. B. et al. 2015 Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat. Neurosci. 18, 1226–1229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Juang B. T., Ludwig A. L., Benedetti K. L., Gu C., Collins K., Morales C. et al. 2014 Expression of an expanded CGG-repeat RNA in a single pair of primary sensory neurons impairs olfactory adaptation in Caenorhabditis elegans. Hum. Mol. Genet. 23, 4945–4959.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kawaguchi Y., Okamoto T., Taniwaki M., Aizawa M., Inoue M., Katayama S. et al. 1994 CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat. Genet. 8, 221–228.

    Article  PubMed  CAS  Google Scholar 

  • Kearse M. G., Green K. M., Krans A., Rodriguez C. M., Linsalata A. E., Goldstrohm A. C. et al. 2016 CGG Repeat-Associated non-AUG translation utilizes a cap-dependent scanning mechanism of initiation to produce toxic proteins. Mol. Cell 62, 314–322.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan L. A., Bauer P. O., Miyazaki H., Lindenberg K. S., Landwehrmeyer B. G. and Nukina N 2006 Expanded polyglutamines impair synaptic transmission and ubiquitin-proteasome system in Caenorhabditis elegans. J. Neurochem. 98, 576–587.

    Article  PubMed  CAS  Google Scholar 

  • Kitamura A., Kubota H., Pack C. G., Matsumoto G., Hirayama S., Takahashi Y. et al. 2006 Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state. Nat. Cell Biol. 8, 1163–1170.

    Article  PubMed  CAS  Google Scholar 

  • Kramer N. J., Carlomagno Y., Zhang Y. J., Almeida S., Cook C. N., Gendron T. F. et al. 2016 Spt4 selectively regulates the expression of C9orf72 sense and antisense mutant transcripts. Science 353, 708–712.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krans A., Kearse M. G. and Todd P. K. 2016 Repeat-associated non-AUG translation from antisense CCG repeats in fragile X tremor/ataxia syndrome. Ann. Neurol. 80, 871–881.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • L’Etoile N. D., Coburn C. M., Eastham J., Kistler A., Gallegos G. and Bargmann C. I. 2002 The cyclic GMP-dependent protein kinase EGL-4 regulates olfactory adaptation in C. elegans. Neuron 36, 1079–1089.

    Article  PubMed  Google Scholar 

  • La Spada A. R., Wilson E. M., Lubahn D. B., Harding A. E. and Fischbeck K. H. 1991 Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79.

    Article  PubMed  Google Scholar 

  • Lee A. L., Ung H. M., Sands L. P. and Kikis E. A. 2017 A new Caenorhabditis elegans model of human huntingtin 513 aggregation and toxicity in body wall muscles. PLoS One 12, e0173644.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee K. H., Zhang P., Kim H. J., Mitrea D. M., Sarkar M., Freibaum B. D. et al. 2016 C9orf72 Dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 167, 774–788 e717.

    Google Scholar 

  • Lee Y. B., Chen H. J., Peres J. N., Gomez-Deza J., Attig J., Stalekar M. et al. 2013 Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep. 5, 1178–1186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Legendre-Guillemin V., Metzler M., Lemaire J. F., Philie J., Gan L., Hayden M. R. et al. 2005 Huntingtin interacting protein 1 (HIP1) regulates clathrin assembly through direct binding to the regulatory region of the clathrin light chain. J. Biol. Chem. 280, 6101–6108.

    Article  PubMed  CAS  Google Scholar 

  • Lejeune F. X., Mesrob L., Parmentier F., Bicep C., Vazquez-Manrique R. P., Parker J. A. et al. 2012 Large-scale functional RNAi screen in C. elegans identifies genes that regulate the dysfunction of mutant polyglutamine neurons. BMC Genomics 13, 91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ling S. C., Polymenidou M. and Cleveland D. W. 2013 Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416–438.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liquori C. L., Ricker K., Moseley M. L., Jacobsen J. F., Kress W., Naylor S. L. et al. 2001 Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293, 864–867.

    Article  PubMed  CAS  Google Scholar 

  • Lopes-Cendes I., Teive H. G., Calcagnotto M. E., Da Costa J. C., Cardoso F., Viana E. et al. 1997 Frequency of the different mutations causing spinocerebellar ataxia (SCA1, SCA2, MJD/SCA3 and DRPLA) in a large group of Brazilian patients. Arq. Neuropsiquiatr. 55, 519–529.

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie I. R., Arzberger T., Kremmer E., Troost D., Lorenzl S., Mori K. et al. 2013 Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations. Acta Neuropathol. 126, 859–879.

    Article  PubMed  CAS  Google Scholar 

  • Mahadevan M., Tsilfidis C., Sabourin L., Shutler G., Amemiya C., Jansen G. et al. 1992 Myotonic dystrophy mutation: an unstable CTG repeat in the 3’ untranslated region of the gene. Science 255, 1253–1255.

    Article  PubMed  CAS  Google Scholar 

  • Mankodi A., Urbinati C. R., Yuan Q. P., Moxley R. T., Sansone V., Krym M. et al. 2001 Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2. Hum. Mol. Genet. 10, 2165–2170.

    Article  PubMed  CAS  Google Scholar 

  • McIntire S. L., Jorgensen E. and Horvitz H. R. 1993 Genes required for GABA function in Caenorhabditis elegans. Nature 364, 334–337.

    Article  PubMed  CAS  Google Scholar 

  • Metzler M., Legendre-Guillemin V., Gan L., Chopra V., Kwok A., McPherson P. S. et al. 2001 HIP1 functions in clathrin-mediated endocytosis through binding to clathrin and adaptor protein 2. J. Biol. Chem. 276, 39271–39276.

    Article  PubMed  CAS  Google Scholar 

  • Mizielinska S., Gronke S., Niccoli T., Ridler C. E., Clayton E. L., Devoy A. et al. 2014 C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science 345, 1192–1194.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mori K., Nihei Y., Arzberger T., Zhou Q., Mackenzie I. R., Hermann A. et al. 2016 Reduced hnRNPA3 increases C9orf72 repeat RNA levels and dipeptide-repeat protein deposition. EMBO Rep. 17, 1314–1325.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morley J. F., Brignull H. R., Weyers J. J. and Morimoto R. I. 2002 The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 99, 10417–10422.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Morley J. F. and Morimoto R. I. 2004 Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol. Biol. Cell 15, 657–664.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moronetti Mazzeo L. E., Dersh D., Boccitto M., Kalb R. G. and Lamitina T. 2012 Stress and aging induce distinct polyQ protein aggregation states. Proc. Natl. Acad. Sci. USA 109, 10587–10592.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nollen E. A., Garcia S. M., van Haaften G., Kim S., Chavez A., Morimoto R. I. et al. 2004 Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc. Natl. Acad. Sci. USA 101, 6403–6408.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pandey U. B., Nie Z., Batlevi Y., McCray B. A., Ritson G. P., Nedelsky N. B. et al. 2007 HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447, 859–863.

    Article  PubMed  CAS  Google Scholar 

  • Parker J. A., Connolly J. B., Wellington C., Hayden M., Dausset J. and Neri C. 2001 Expanded polyglutamines in Caenorhabditis elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neurons without cell death. Proc. Natl. Acad. Sci. USA 98, 13318–13323.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Parker J. A., Metzler M., Georgiou J., Mage M., Roder J. C., Rose A. M. et al. 2007 Huntingtin-interacting protein 1 influences worm and mouse presynaptic function and protects Caenorhabditis elegans neurons against mutant polyglutamine toxicity. J. Neurosci. 27, 11056–11064.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Paulson H. L., Shakkottai V. G., Clark H. B. and Orr H. T. 2017 Polyglutamine spinocerebellar ataxias - from genes to potential treatments. Nat. Rev. Neurosci. 18, 613–626.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ranum L. P. and Cooper T. A. 2006 RNA-mediated neuromuscular disorders. Annu. Rev. Neurosci. 29, 259–277.

    Article  PubMed  CAS  Google Scholar 

  • Renton A. E., Majounie E., Waite A., Simon-Sanchez J., Rollinson S., Gibbs J. R. et al. 2011 A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rudich P., Snoznik C., Watkins S. C., Monaghan J., Pandey U. B. and Lamitina S. T. 2017 Nuclear localized C9orf72-associated arginine-containing dipeptides exhibit age-dependent toxicity in C. elegans. Hum. Mol. Genet. 26, 4916–4928.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sandford E. and Burmeister M. 2014 Genes and genetic testing in hereditary ataxias. Genes (Basel) 5, 586–603.

    Article  CAS  Google Scholar 

  • Satyal S. H., Schmidt E., Kitagawa K., Sondheimer N., Lindquist S., Kramer J. M. et al. 2000 Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 97, 5750–5755.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Saul R. A. and Tarleton J. C. 1993 FMR1-related disorders (ed. M. P. Adam, H. H. Ardinger, R. A. Pagon, S. E. Wallace L. J. H. Bean, K. Stephens and A. Amemiya). GeneReviews, Seattle.

  • Schludi M. H., May S., Grässer F. A., Rentzsch K., Kremmer E., Küpper C. et al. 2015 Distribution of dipeptide repeat proteins in cellular models and C9orf72 mutation cases suggests link to transcriptional silencing. Acta Neuropathologica. 130, 537–555.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scoles D. R., Ho M. H., Dansithong W., Pflieger L. T., Petersen L. W., Thai K. K. et al. 2015 Repeat associated non-AUG translation (RAN Translation) dependent on sequence downstream of the ATXN2 CAG repeat. PLoS One 10, e0128769.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Silveira I., Lopes-Cendes I., Kish S., Maciel P., Gaspar C., Coutinho P. et al. 1996 Frequency of spinocerebellar ataxia type 1, dentatorubropallidoluysian atrophy, and Machado-Joseph disease mutations in a large group of spinocerebellar ataxia patients. Neurology 46, 214–218.

    Article  PubMed  CAS  Google Scholar 

  • Tavernarakis N. and Driscoll M. 2001 Mechanotransduction in Caenorhabditis elegans: the role of DEG/ENaC ion channels. Cell Biochem. Biophys. 35, 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Teixeira-Castro A., Ailion M., Jalles A., Brignull H. R., Vilaca J. L., Dias N. et al. 2011 Neuron-specific proteotoxicity of mutant ataxin-3 in C. elegans: rescue by the DAF-16 and HSF-1 pathways. Hum. Mol. Genet. 20, 2996–3009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teuling E., Bourgonje A., Veenje S., Thijssen K., de Boer J., van der Velde J. et al. 2011 Modifiers of mutant huntingtin aggregation: functional conservation of C. elegans-modifiers of polyglutamine aggregation. PLoS Curr. 3, RRN1255.

    Article  PubMed  PubMed Central  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group 1993 A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983.

  • Todd P. K., Oh S. Y., Krans A., He F., Sellier C., Frazer M. et al. 2013 CGG repeat-associated translation mediates neurodegeneration in fragile X tremor ataxia syndrome. Neuron 78, 440–455.

    Article  PubMed  CAS  Google Scholar 

  • Tran H., Almeida S., Moore J., Gendron T. F., Chalasani U., Lu Y. et al. 2015 Differential toxicity of nuclear RNA foci versus dipeptide repeat proteins in a Drosophila model of C9ORF72 FTD/ALS. Neuron 87, 1207–1214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Assche R., Borghgraef C., Vaneyck J., Dumoulin M., Schoofs L. and Temmerman L. 2017 In vitro aggregating beta-lactamase-polyQ chimeras do not induce toxic effects in an in vivo Caenorhabditis elegans model. J. Negat. Results Biomed. 16, 14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Verkerk A. J., Pieretti M., Sutcliffe J. S., Fu Y. H., Kuhl D. P., Pizzuti A. et al. 1991 Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914.

    Article  PubMed  CAS  Google Scholar 

  • Voisine C., Varma H., Walker N., Bates E. A., Stockwell B. R. and Hart A. C. 2007 Identification of potential therapeutic drugs for huntington’s disease using Caenorhabditis elegans. PLoS One 2, e504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L.-C., Chen K.-Y., Pan H., Wu C.-C., Chen P.-H., Liao Y.-T. et al. 2011 Muscleblind participates in RNA toxicity of expanded CAG and CUG repeats in Caenorhabditis elegans. Cell. Mol. Life Sci. 68, 1255–1267.

    Article  PubMed  CAS  Google Scholar 

  • Wang X., Hao L., Saur T., Joyal K., Zhao Y., Zhai D. et al. 2016 Forward genetic screen in Caenorhabditis elegans suggests F57A10.2 and acp-4 as suppressors of C9ORF72 related phenotypes. Front Mol. Neurosci. 9, 113.

    PubMed  PubMed Central  Google Scholar 

  • Warby S. C., Graham R. K. and Hayden M. R. 1993 Huntington disease (ed. M. P. Adam, H. H. Ardinger, R. A. Pagon, S. E Wallace, L. J. H Bean, K. Stephens and A. Amemiya). GeneReviews, Seattle.

  • Wellington C. L., Ellerby L. M., Gutekunst C. A., Rogers D., Warby S., Graham R. K. et al. 2002 Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington’s disease. J. Neurosci. 22, 7862–7872.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wen X., Tan W., Westergard T., Krishnamurthy K., Markandaiah S. S., Shi Y. et al. 2014 Antisense proline-arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death. Neuron 84, 1213–1225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wexler N. S., Lorimer J., Porter J., Gomez F., Moskowitz C., Shackell E. et al. 2004 Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc. Natl. Acad. Sci. USA 101, 3498–3503.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang K., Donnelly C. J., Haeusler A. R., Grima J. C., Machamer J. B., Steinwald P. et al. 2015 The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525, 56–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zu T., Cleary J. D., Liu Y., Banez-Coronel M., Bubenik J. L., Ayhan F. et al. 2017 RAN translation regulated by muscleblind proteins in myotonic dystrophy type 2. Neuron 95, 1292–1305 e1295.

    Google Scholar 

  • Zu T., Gibbens B., Doty N. S., Gomes-Pereira M., Huguet A., Stone M. D. et al. 2011 Non-ATG-initiated translation directed by microsatellite expansions. Proc. Natl. Acad. Sci. USA 108, 260–265.

    Article  PubMed  Google Scholar 

  • Zu T., Liu Y., Bañez-Coronel M., Reid T., Pletnikova O., Lewis J. et al. 2013 RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc Natl. Acad. Sci. USA 110, E4968–4977.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding was provided by NIH (grant nos. R21NS094921, R21NS096319 and R01GM105655).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Lamitina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudich, P., Lamitina, T. Models and mechanisms of repeat expansion disorders: a worm’s eye view. J Genet 97, 665–677 (2018). https://doi.org/10.1007/s12041-018-0950-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-018-0950-8

Keywords

Navigation