Skip to main content
Log in

Transcriptome analysis reveals dynamic changes in the gene expression of tobacco seedlings under low potassium stress

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Potassium plays a key role in plant development and reproduction. In agricultural practice, potassium deficiency is common worldwide, and leads to crop growth inhibition and output reduction. In this study, we analysed the transcriptome of tobacco seedlings under low potassium stress. Tobacco seedlings with or without decreased potassium treatment were harvested after 0 (control), 6, 12, or 24 h and were submitted for microarray analysis. The results showed that up to 3790 genes were upregulated or downregulated more than 2-fold as a result of the decreased potassium treatment. Gene ontology analysis revealed significantly differentially expressed genes that were categorized as cation binding, transcription regulation, metabolic processes, transporter activity and enzyme regulation. Some potassium, nitrogen and phosphorus transporters; transcription factors; and plant signal molecules, such as CPKs were also significantly differentially expressed under potassium deficiency. Our results indicate that the expression profiles of a large number of genes involved in various plant physiological processes are significantly altered in response to potassium deficiency, which can result in physiological and morphological changes in tobacco plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Ahn S. J., Shin R. and Schachtman D. P. 2004 Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K + uptake. Plant Physiol. 134, 1135–1145.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alves M. S., Dadalto S. P., Gonçalves A. B., De Souza G. B., Barros V. A. and Fietto L. G. 2013 Plant bZIP transcription factors responsive to pathogens: a review. Int. J. Mol. Sci. 14, 7815–7828.

    Article  PubMed Central  PubMed  Google Scholar 

  • Armengaud P., Breitling R. and Amtmann A. 2004 The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol. 136, 2556–2576.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ashley M., Grant M. and Grabov A. 2006 Plant responses to potassium deficiencies: a role for potassium transport proteins . J. Exp. Bot. 57, 425–436.

    Article  CAS  PubMed  Google Scholar 

  • Baek D., Kim M. C., Chun H. J., Kang S., Park H. C., Shin G. et al. 2013 Regulation of miR399f transcription by AtMYB2 affects phosphate starvation responses in Arabidopsis. Plant Physiol. 161, 362–373.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bañuelos M. A., Garciadeblas B., Cubero B. and Rodríguez-Navarro A 2002 Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol. 130, 784–795.

    Article  PubMed Central  PubMed  Google Scholar 

  • Buschmann P. H., Vaidyanathan R., Gassmann W. and Schroeder J. I. 2000 Enhancement of Na(+) uptake currents, time-dependent inward-rectifying K(+) channel currents, and K(+) channel transcripts by K(+) starvation in wheat root cells. Plant Physiol. 122, 1387–1397.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cellier F., Conéjéro G., Ricaud L., Luu D. T., Lepetit M., Gosti F. et al. 2004 Characterization of AtCHX17, a member of the cation/H + exchangers, CHX family, from Arabidopsis thaliana suggests a role in K + homeostasis. Plant J. 39, 834–846.

    Article  CAS  PubMed  Google Scholar 

  • Chen L. M., Li W. B. and Zhou X. A. 2012 Regulatory network of transcription factors in response to drought in Arabidopsis and crops. J. Northeast Agri. Univ. (English edition) 19, 1–13.

    Article  Google Scholar 

  • Clarkson D. T. and Hanson J. B. 1980 The mineral nutrition of higher plants. Ann. Rev. Plant Physiol. 31, 239–298.

    Article  CAS  Google Scholar 

  • Dai X., Wang Y., Yang A. and Zhang W. H. 2012 OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice. Plant Physiol. 159, 169–183.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dong J., Chen C. and Chen Z. 2003 Expression profile of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol. Biol. 51, 21–37.

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T., Rushton P. J., Robatzek S. and Somssich I. E. 2000 The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5, 199–206.

    Article  CAS  PubMed  Google Scholar 

  • Fujita M., Fujita Y., Noutoshi Y., Takahashi F., Narusaka Y., Yamaguchi-Shinozaki K. et al. 2006 Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol. 9, 436–442.

    Article  PubMed  Google Scholar 

  • Fulgenzi F. R., Peralta M. L., Mangano S., Danna C. H., Vallejo A. J., Puigdomenech P. et al. 2008 The ionic environment controls the contribution of the barley HvHAK1 transporter to potassium acquisition. Plant Physiol. 147, 252–262.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gierth M., Mäser P. and Schroeder J. I. 2005 The potassium transporter AtHAK5 functions in K(+) deprivation-induced high-affinity K(+) uptake and AKT1 K(+) channel contribution to K(+) uptake kinetics in Arabidopsis roots. Plant Physiol. 137, 1105–1114.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Held K., Pascaud F., Eckert C., Gajdanowicz P., Hashimoto K., Corratge Faillie C. et al. 2011 Calcium dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex . Cell Res. 21, 1116–1130.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huh S. M., Noh E. K., Kim H. G., Jeon B. W., Bae K., Hu H. C. et al. 2010 Arabidopsis annexins AnnAt1 and AnnAt4 interact with each other and regulate drought and salt stress response. Plant Cell Physiol. 51, 1499–1514.

    Article  CAS  PubMed  Google Scholar 

  • Krapp A., Berthome R., Orsel M., Mercey-Boutet S., Yu A., Castaings L. et al. 2011 Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation. Plant Physiol. 157, 1255–1282.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li C. A., Ng C. K. Y. and Fan L. M. 2014 MYB transcription factors, active players in abiotic stress signaling. Environ. Exp. Bot. 114, 80–91.

    Article  Google Scholar 

  • Li L., Kim B. G., Cheong Y. H., Pandey G. K. and Luan S. 2006 A Ca 2+ signaling pathway regulates a K + channel for low-K response in Arabidopsis. Proc. Natl. Acad. Sci. USA 103, 12625–12630.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li L., Liu C. and Lian X. 2010 Gene expression profiles in rice roots under low phosphorus stress. Plant Mol. Biol. 72, 423–432.

    Article  CAS  PubMed  Google Scholar 

  • Liu L. L., Ren H. M., Chen L. Q., Wang Y. and Wu W. H. 2013 A protein kinase, calcineurin B-like protein-interacting protein kinase 9, interacts with calcium sensor calcineurin B-like protein3 and regulates potassium homeostasis under low-potassium stress in Arabidopsis. Plant Physiol. 161, 266–277.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lian X., Wang S., Zhang J., Feng Q., Zhang L., Fan D. et al. 2006 Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray. Plant Mol. Biol. 60, 617–631.

    Article  CAS  PubMed  Google Scholar 

  • Luan S. 2009 The CBL–CIPK network in plant calcium signaling. Trends Plant Sci. 14, 37–42.

    Article  CAS  PubMed  Google Scholar 

  • Ma T. L., Wu W. H. and Wang Y. 2012 Transcriptome analysis of rice root responses to potassium deficiency. BMC Plant Biol. 12, 161–173.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Misson J., Raghothama K. G., Jain A., Jouhet J., Block M. A., Bligny R. et al. 2005 A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc. Natl. Acad. Sci. USA 102, 11934–11939.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mizoi J., Shinozaki K. and Yamaguchi-Shinozaki K. 2012 AP2/ERF family transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta 1819, 86–96.

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K., Takasaki H., Mizoi J., Shinozaki K. and Yamaguchi-Shinozaki K. 2012 NAC transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta 1819, 97–103.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson L., Müller R. and Nielsen T. H. 2010 Dissecting the plant transcriptome and the regulatory responses to phosphate deprivation. Physiol. Plant 139, 129–143.

    Article  CAS  PubMed  Google Scholar 

  • Reddy A. G. and Reddy A. S. 2003 Characterization of a pathogen-induced calmodulin-binding protein: mapping of four Ca 2+-dependent calmodulin-binding domains. Plant Mol. Biol. 52, 143–159.

    Article  CAS  PubMed  Google Scholar 

  • Ren F., Guo Q. Q., Chang L. L., Chen L., Zhao C. Z., Zhong H. et al. 2012 Brassica napus PHR1 gene encoding a MYB-like protein functions in response to phosphate starvation. PLoS One 7, e44005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ren X. L., Qi G. N., Feng H. Q., Zhao S., Zhao S. S., Wang Y. et al. 2013 Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K + homeostasis in Arabidopsis . Plant J. 74, 258–266.

    Article  CAS  PubMed  Google Scholar 

  • Rushton P. J., Somssich I. E., Ringler P. and Shen Q. J. 2010 WRKY transcription factors. Trends Plant Sci. 15, 247– 258.

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y., Maruyama K., Osakabe Y., Qin F., Seki M., Shinozaki K. et al. 2006 Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18, 1292–1309.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santa-María G. E., Rubio F., Dubcovsky J. and Rodriguez-Navarro A. 1997 The HAK1gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter . Plant Cell 9, 2281–2289.

    Article  PubMed Central  PubMed  Google Scholar 

  • Shin R., Berg R. H. and Schachtman D. P. 2005 Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol. 46, 1350–1357.

    Article  CAS  PubMed  Google Scholar 

  • Soo Y. K. 2006 The role of ABF family bZIP class transcription factors in stress response. Physiol. Plant 126, 519– 527.

    Google Scholar 

  • Todd C. D., Zeng P., Huete A. M., Hoyos M. E. and Polacco J. C. 2004 Transcripts of MYB-like genes respond to phosphorous and nitrogen deprivation in Arabidopsis. Planta 219, 1003– 1009.

    Article  CAS  PubMed  Google Scholar 

  • Véry A. A. and Sentenac H. 2003 Molecular mechanisms and regulation of K + transport in higher plants. Ann. Rev. Plant Biol. 54, 575–603.

    Article  Google Scholar 

  • Wang D., Pan Y. J., Zhao X. Q., Zhu L. H., Fu B. Y. and Li Z. K. 2011 Genome-wide temporal spatial gene expression profiling of drought responsiveness in rice. BMC Genomics 12, 149–163.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang Y. and Wu W. H. 2013 Potassium transport and signaling in higher plants. Ann. Rev. Plant Biol. 64, 451–476.

    Article  CAS  Google Scholar 

  • Ward J. M., Mäser P. and Schroeder J. I. 2009 Plant ion channels: gene families, physiology, and functional genomics analyses. Ann. Rev. Physiol. 71, 59–82.

    Article  CAS  Google Scholar 

  • Wasaki J., Yonetani R., Kuroda S., Shinano T., Yazaki J., Fujii F. et al. 2003 Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ. 26, 1515–1523.

    Article  CAS  Google Scholar 

  • Wasaki J., Shinano T., Onishi K., Yonetani R., Yazaki J., Fujii F. et al. 2006 Transcriptomic analysis indicates putative metabolic changes caused by manipulation of phosphorus availability in rice leaves. J. Exp. Bot. 57, 2049–2059.

    Article  CAS  PubMed  Google Scholar 

  • Weinl S. and Kudla J. 2009 The CBL–CIPK Ca 2+-decoding signaling network: function and perspectives. New Phytol. 184, 517–528.

    Article  CAS  PubMed  Google Scholar 

  • Woo J., MacPherson C. R., Liu J., Wang H., Kiba T., Hannah M. A. et al. 2012 The response and recovery of the Arabidopsis thaliana transcriptome to phosphate starvation. BMC Plant Biol. 12, 62–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu G. Y., Rocha P. S. C. F., Wang M. L., Xu M. L., Cui Y. C., Li L. Y. et al. 2011 A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234, 47–59.

    Article  CAS  PubMed  Google Scholar 

  • Xu J., Li H. D., Chen L. Q., Wang Y., Liu L. L., He L. et al. 2006 A protein kinase, interacting with two calcineurin B-like proteins, regulates K + transporter AKT1 in Arabidopsis. Cell 125, 1347–1360.

    Article  CAS  PubMed  Google Scholar 

  • Zhou J., Jiao F., Wu Z., Li Y., Wang X., He X. et al. 2008 OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol. 146, 1673–1686.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the editors and reviewers of this article for their kind comments and suggestions to improve the quality of this article. This work is supported by the National Natural Science Foundation of China (31070244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LIQIN LI.

Additional information

[Lu L., Chen Y., Lu L., Lu Y. and Li L. 2015 Transcriptome analysis reveals dynamic changes in the gene expression of tobacco seedlings under low potassium stress. J. Genet. 94, xx–xx]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LU, L., CHEN, Y., LU, L. et al. Transcriptome analysis reveals dynamic changes in the gene expression of tobacco seedlings under low potassium stress. J Genet 94, 397–406 (2015). https://doi.org/10.1007/s12041-015-0532-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-015-0532-y

Keywords

Navigation