Skip to main content
Log in

Genetic interaction and mapping studies on the leaflet development (lld) mutant in Pisum sativum

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

In Pisum sativum, the completely penetrant leaflet development (lld) mutation is known to sporadically abort pinnae suborgans in the unipinnate compound leaf. Here, the frequency and morphology of abortion was studied in each of the leaf suborgans in 36 genotypes and in presence of auxin and gibberellin, and their antagonists. Various lld genotypes were constructed by multifariously recombining lld with a coch homeotic stipule mutation and with af, ins, mare, mfp, tl and uni-tac leaf morphology mutations. It was observed that the suborgans at all levels of pinna subdivisions underwent lld-led abortion events at different stages of development. As in leafblades, lld aborted the pinnae in leaf-like compound coch stipules. The lld mutation interacted with mfp synergistically and with other leaf mutations additively. The rod-shaped and trumpet-shaped aborted pea leaf suborgans mimicked the phenotype of aborted leaves in HD-ZIP-III-deficient Arabidopsis thaliana mutants. Suborganwise aborted morphologies in lld gnotypes were in agreement with basipetal differentiation of leaflets and acropetal differentiation in tendrils. Altogether, the observations suggested that LLD was the master regulator of pinna development. On the basis of molecular markers found linked to lld, its locus was positioned on the linkage group III of the P. sativum genetic map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aida M., lshida T., Fukaki H., Fujisawa H. and Tasaka M. 1997 Genes involved in organ separation in Arabidopsis: An analysis of the cup-shaped cotyledon mutant. Plant Cell 9, 841–857.

    Article  PubMed  CAS  Google Scholar 

  • Aida M., Ishida T. and Tasaka M. 1999 Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: Interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126, 1563–1570.

    PubMed  CAS  Google Scholar 

  • Aida M., Vernoux T., Furutani M., Jraas J. and Tasaka M. 2002 Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development 129, 3965–3974.

    PubMed  CAS  Google Scholar 

  • Baima S., Possenti M., Matteucci A., Wisman E., Altamura M. M., Ruberti I. and Morelli G. 2001 The Arabidopsis ATBH-8 HD-ZIP protein acts as differentiation–promoting transcription factor of the vascular meristems. Plant Physiol. 126, 643–655.

    Article  PubMed  CAS  Google Scholar 

  • Barkoulas M., Hay A., Kongioumoutzi E. and Tsiantis M. 2008 A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta. Nat. Genet. 40, 1136–1141.

    Article  PubMed  CAS  Google Scholar 

  • Benkova E., Michniewicz M., Sauer M., Teichmann T., Scifertova D., Jurgens G. and Firm J. 2003 Local, efflux dependent auxin gradients as a comman module for plant organ formation. Cell 115, 591–602.

    Article  PubMed  CAS  Google Scholar 

  • Berger Y., Harpaj-Saad S., Brand A., Melnik H., Sirding N., Alvarez J. P., et al. 2009 The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development 136, 823–832.

    Article  PubMed  CAS  Google Scholar 

  • Bharathan G., Goliber T. E., Moore C., Kessler S., Pham T. and Sinha N. R. 2002 Homologies in leaf form inferred from KNOX1 gene expression during development. Science 296, 1858–1860.

    Article  PubMed  CAS  Google Scholar 

  • Blein T., Pulido A., Vialette-Guiraud A., Nikovics K., Morin H., Hay A., et al. 2008 A conserved molecular framework for compound leaf development. Science 322, 1835–1839.

    Article  PubMed  CAS  Google Scholar 

  • Blixt S. 1972 Mutation genetics in Pisum. Agric. Hort. Genet. 30, 1–293.

    Google Scholar 

  • Braybrook S. and Kuhlemeier C. 2010 How a plant builds leaves? Plant Cell 22, 1006–1018.

    Article  PubMed  CAS  Google Scholar 

  • Burstin J., Deniot G., Potier J., Weinachter C., Aubert G. and Baranger A. 2001 Microsatellite polymorphism in Pisum sativum. Plant Breeding 120, 311–317.

    Article  CAS  Google Scholar 

  • Byrne M. E., Barley R., Curtis M., Arroya J. M., Dunham M., Hudson A. and Martienssen R. A. 2000 ASYMMETRIC LEAVES 1 mediates leaf patterning and stem cell formation in Arabidopsis. Nature 408 967–971.

    Article  PubMed  CAS  Google Scholar 

  • Canales C., Barkoulas M., Galinha C. and Tsiantis M. 2010 Weeds of change: Cardamine hirsuta as a new model system for studying dissected leaf development. J. Plant Res. 123, 25–33.

    Article  PubMed  Google Scholar 

  • Champagne C. and Sinha N. 2004 Compound leaves: equal to sum of their parts. Development 131, 4401–4412.

    Article  PubMed  CAS  Google Scholar 

  • Chitwood D. H., Guo M. J., Nogueira F. T. and Timmermans M. C. P. 2007 Establishing leaf polarity: The role of small RNAs and positional signals in the shoot apex. Development 134, 813–823.

    Article  PubMed  CAS  Google Scholar 

  • Chitwood D. H., Nogueira F. T., Howell M. D., Montgomery T. A., Carrington J. C. and Timmermans M. C. 2009 Pattern formation via small RNA mobility. Genes Dev. 23, 549–554.

    Article  PubMed  CAS  Google Scholar 

  • DeMason D. A. and Schmidt R. J. 2001 Roles of the uni gene in shoot and leaf development of pea (Pisum sativum): phenotypic characterization and leaf development in the uni and uni-tac mutants. Int. J. Plant Sci. 162, 1033–1051.

    Article  CAS  Google Scholar 

  • Doyle J. L. and Doyle J. J. 1990 Isolation of plant DNA from fresh tissue. Focus 12, 13–15.

    Google Scholar 

  • Eckardt N. A. 2004 The role of PHANTASTICA in leaf development. Plant Cell 16, 1073–1075.

    Article  Google Scholar 

  • Efroni I., Eshed Y. and Lifschitz E. 2010 Morphogenesis of simple and compound leaves: a critical review. Plant Cell 22, 1019–1032.

    Article  PubMed  CAS  Google Scholar 

  • Ellis T. H. N. and Poser S. J. 2002 An integrated and comparative view of pea genetic and cytogenetic maps. New Phytol. 153, 17–25.

    Article  CAS  Google Scholar 

  • Emery J. F., Floyd S. K., Alvarez J., Eshed Y., Hawker N. P., Izhaki A., et al. 2003 Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol. 13, 1768–1774.

    Article  PubMed  CAS  Google Scholar 

  • Esau K. 1997 Anatomy of seed plants, pp. 550. Wiley, New York USA.

    Google Scholar 

  • Eshed Y., Izhaki A., Baum S. F., Floyd S. K. and Bowman J. L. 2004 Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development 131, 2997–3006.

    Article  PubMed  CAS  Google Scholar 

  • Eujayl I., Sledge M. K., Wang L., May G. D., Chekhovskiy K., Zwonitzer J. C. and Mian M. A. R. 2004 Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor. Appl. Genet. 108, 414–422.

    Article  PubMed  CAS  Google Scholar 

  • Fahlgren N., Montgomery T. A., Howell M. D., Allen E., Dvorak S. K., Alexander A. L. and Carrington J. C. 2006 Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr. Biol. 16, 939–944.

    Article  PubMed  CAS  Google Scholar 

  • Floyd S. K. and Bowman J. L. 2006 Distinct developmental mechanisms reflect the independent origins of leaves in vascular plants. Curr. Biol. 16, 1911–1917.

    Article  PubMed  CAS  Google Scholar 

  • Floyd S. K. and Bowman J. L. 2010 Gene expression patterns in seed plant shoot meristems and leaves: homoplasy or homology? J. Plant Res. 123, 43–55.

    Article  PubMed  CAS  Google Scholar 

  • Furutani M., Vernoux T., Trass J., Katao T., Tasaka M. and Aida M. 2004 PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis. Development 131, 5021–5030.

    Article  PubMed  CAS  Google Scholar 

  • Gourlay C. W., Hofer J. M. I. and Ellis T. H. N. 2000 Pea compound leaf architecture is regulated by interactions among the genes UNIFOLIATA, COCHLEATA, AFILA and TENDRIL-LESS. Plant Cell 12, 1279–1294.

    PubMed  CAS  Google Scholar 

  • Grigg S. P., Canales C., Hay A. and Tsiantis M. 2005 SERRATE coordinates shoot meristem function and leaf axial patterning in Arabidopsis. Nature 437, 1022–1026.

    Article  PubMed  CAS  Google Scholar 

  • Gupta S., Pandey-Rai S., Srivastava S., Naithani S. C., Prasad M. and Kumar S. 2007 Construction of genetic linkage map of the medicinal and ornamental plant Catharanthus roseus. J. Genet. 86, 259–268.

    Article  PubMed  CAS  Google Scholar 

  • Hake S., Smith H. M. S., Holtan H., Magnani E., Mele G. and Ramirez J. 2004 The role of KNOX genes in plant development. Ann. Rev. Cell Dev. Biol. 20, 125–151.

    Article  CAS  Google Scholar 

  • Hareven D., Gutfinger T., Parnis A., Eshed Y. and Lifschitz E. 1996 The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell 84, 735–744.

    Article  PubMed  CAS  Google Scholar 

  • Hasson A., Blein T. and Laufs P. 2010 Leaving the meristem behind: the genetic and molecular control of leaf patterning and morphogenesis. C. R. Biol. 333, 350–360.

    Article  PubMed  CAS  Google Scholar 

  • Hay A. and Tsiantis M. 2006 Genetic basis of far differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Nat. Genet. 38, 942–947.

    Article  PubMed  CAS  Google Scholar 

  • Hibara K., Karim M. R., Takada S., Taoka K., Furutani M., Aida M. and Tasaka M. 2006 Arabidopsis CUP-SHAPED COTYLEDON3 regulates post embryonic shoot meristem and organ boundary formation. Plant Cell 18, 2946–2957.

    Article  PubMed  CAS  Google Scholar 

  • Hofer J., Turner I., Hellens R., Ambrose M., Mathews P., Michael A. and Ellis N. 1997 UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr. Biol. 7, 581–587.

    Article  PubMed  CAS  Google Scholar 

  • Hunter C., Wilman M. R., Wu G., Yoshikwa M., de la Luz Gutierrez-Nava M. and Poethig S. R. 2006 Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulate heteroblasty in Arabidopsis. Development 133, 2973–2981.

    Article  PubMed  CAS  Google Scholar 

  • Janssen B.-J., Lund L. and Sinha N. 1998 Over-expression of a homebox gene, LeT6, reveals indeterminate features in the tomato compound leaf. Plant Physiol. 117, 771–786.

    Article  PubMed  CAS  Google Scholar 

  • Kerstetter R. A., Bollman K., Taylor R. A., Bomblies K. and Poethig R. S. 2001 KANADI regulates organ polarity in Arabidopsis. Nature 411, 706–709.

    Article  PubMed  CAS  Google Scholar 

  • Kidner C. A. 2010 The many roles of small RNAs in leaf development. J. Genet. Genomics 37, 13–21.

    Article  PubMed  CAS  Google Scholar 

  • Kidner C. A. and Martienssen R. A. 2004 Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature 428, 81–84.

    Article  PubMed  CAS  Google Scholar 

  • Kidner C. A. and Timmermans M. C. P. 2007 Mixing and matching pathways in leaf polarity. Curr. Opin. Plant Biol. 10, 13–23.

    Article  PubMed  Google Scholar 

  • Kim M., McCormick S., Timmermans M. and Sinha N. 2003a The expression domain of PHANTASTICA determines leaflet placement in compound leaves. Nature 424, 438–443.

    Article  PubMed  CAS  Google Scholar 

  • Kim M., Pham T., Hamidi A., McCormick S., Kuzoff R. K. and Sinha N. 2003b Reduced leaf complexity in tomato wiry mutant suggests a role for PHAN and KNOX genes in generating compound leaves. Development 130, 4405–4415.

    Article  PubMed  CAS  Google Scholar 

  • Kim Y. S., Kim S. G., Lee M., Lee I., Park H. Y., Seo P. J., et al. 2008 HD-ZIP III activity is modulated by competitive inhibitors via a feedback loop in Arabidopsis shoot apical meristem development. Plant Cell 20, 920–933.

    Article  PubMed  CAS  Google Scholar 

  • Koltai H. and Bird D. M. 2000 Epistatic repression of PHANTASTICA and class 1 KNOTTED genes is uncoupled in tomato. Plant J. 22, 455–459.

    Article  PubMed  CAS  Google Scholar 

  • Kosambi D. D. 1944 The estimation of map distances from recombination values. Ann. Eugen. 12, 172–175.

    Google Scholar 

  • Koyama T., Furutani M., Tasaka M. and Ohme-Takagi M. 2007 TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. Plant Cell 19, 473–484.

    Article  PubMed  CAS  Google Scholar 

  • Kumar S. and Sharma B. 1975 Circular stipule and hypertendrilled: two new induced mutations of Pisum. Pulse Newslett. 7, 24–25.

    Google Scholar 

  • Kumar S., Rai S. K., Rai S. P., Srivastava S. and Singh D. 2004 Regulation of unipinnate character in the distal tendrilled domain of compound leaf-blade by the gene MULTIFOLIATE PINNA (MFP) in pea Pisum sativum. Plant Sci. 166, 929–940.

    Article  CAS  Google Scholar 

  • Kumar S., Mishra R. K., Kumar A., Srivastava S. and Chaudhary S. 2009 Regulation of stipule development by COCHLEATA and STIPULE-REDUCED genes in pea Pisum sativum. Planta 230, 449–458.

    Article  PubMed  CAS  Google Scholar 

  • Kumar S., Chaudhary S., Sharma V., Kumari R., Mishra R. K., Kumar A., et al. 2010 Genetic control of leaf-blade morphogenesis by the INSECATUS gene in Pisum sativum. J. Genet. 89, 201–211.

    Article  PubMed  Google Scholar 

  • Lander E. S., Green P., Abrahamson J., Barolw A., Daly M., Lincoln S. and Newberg L. 1987 MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181.

    Article  PubMed  CAS  Google Scholar 

  • Laufs P., Peaucelle A., Morin H. and Trass J. 2004 Micro RNA regulation of CUC genes is required for boundry size control in Arabidopsis meristem. Development 131, 4311–4322.

    Article  PubMed  CAS  Google Scholar 

  • Lincoln S., Daly M. and Lander E. S. 1992 Constructing genetic maps with Mapmaker/Exp 3.0 Whitehead Institute Technical Report, 3rd edition. Whitehouse Technical Institute, Cambridge, USA.

  • Loridon K., McPhee K., Morin J., Dubreuil P., Pilet-Nayel M. L., Aubert G., et al. 2005 Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.) Theor. Appl. Genet. 111, 1022–1031.

    Article  PubMed  CAS  Google Scholar 

  • Mallory R. C., Dugas D. V., Bartel D. P. and Bartel B. 2004 Micro RNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative and floral organs. Curr. Biol. 14, 1035–1045.

    Article  PubMed  CAS  Google Scholar 

  • Marcotrigiano M. 2001 Genetic mosaics and the analysis of leaf development. Int. J. Plant Sci. 162, 513–525.

    Article  CAS  Google Scholar 

  • Marx G. A. 1987 A suite of mutants that modify pattern formation in pea leaves. Plant Mol. Biol. Rep. 5, 311–335.

    Article  Google Scholar 

  • Marx G. A. 1989 Pea leaf architecture: the interaction of af, tl, and tac. Pisum Newslett. 21, 33.

    Google Scholar 

  • Mishra R. K., Chaudhary S., Kumar A. and Kumar S. 2009 Effects of MULTIFOLIATE-PINNA, AFILA, TENDRIL-LESS and UNIFOLIATA genes on leaf blade architecture in Pisum sativum. Planta 230, 177–190.

    Article  PubMed  CAS  Google Scholar 

  • McConnel J. R., Emery J., Eshed Y., Bao N., Bowman J., Barton M. K. 2001 Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411, 709–713.

    Article  Google Scholar 

  • McHale N. A. and Koning R. E. 2004 PHANTASTICA regulates development of the adaxial mesophyll in Nicotiana leaves. Plant Cell 16, 1251–1262.

    Article  PubMed  CAS  Google Scholar 

  • Naidenova N. 2001 Genetic study of pea (Pisum sativum L.) mutants with changed shape and/or dentation of leaves. C. R. Acad. Bulgare Sci. 54, e81–e86.

    Google Scholar 

  • Nicotra A. B., Leigh A., Boyce C. K., Jones C. S., Niklas K. J., Royer D. L. and Tsukaya H. 2011 The evolution and functional significance of leaf shape in the angiosperms. Func. Plant Biol. 38, 535–552.

    Article  Google Scholar 

  • Nogueira F. T, Madi S., Chitwood D. M., Juarez M. T. and Timmermans M. C. 2007 Two small regulatory RNAs establishing opposing fates of a development axis. Genes Dev. 21, 750–755.

    Article  PubMed  CAS  Google Scholar 

  • Ori N., Eshed Y., Church G., Bowman J. L. and Hake S. 2000 Mechanisms that control knox gene expression in the Arabidopsis shoot. Development 127, 5523–5532.

    PubMed  CAS  Google Scholar 

  • Pekker I., Alvarej J. P. and Eshed Y. 2005 Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 17, 2899–2910.

    Article  PubMed  CAS  Google Scholar 

  • Prajapati S. and Kumar S. 2001 Role of LLD, a new locus for leaflet/pinna morphogenesis in Pisum Sativum. J. Biosci. 26, 607–625.

    Article  CAS  Google Scholar 

  • Prajapati S. and Kumar S. 2002 Interaction of the UNIFOLIATA-TENDRILLED ACACIA gene with AFILA and TENDRIL-LESS genes in the determination of leafblade growth and morphology in Pisum sativum. Plant Sci. 162, 713–721.

    Article  CAS  Google Scholar 

  • Prigge M. J., Otsuga D., Alonso J. M., Ecker J. R., Drews G. N. and Clark S. E. 2005 Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic and distinct roles in Arabidopsis development. Plant Cell 17, 61–76.

    Article  PubMed  CAS  Google Scholar 

  • Prioul S., Frankewitz A., Deninot G., Morin G. and Baranger A. 2004 Mapping of quantative trait loci for partial resistance to Mycosphaerella pinodes in pea (Pisum sativum L), at the seedling and adult plant stages. Theor. Appl. Genet. 108, 1322–1334.

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt D., Pesce E. R., Stieger P., Mandel T., Baltensperger K., Bennet M., et al. 2003 Regulation of phyllotaxis by polar auxin tranasport. Nature 426, 255–260.

    Article  PubMed  CAS  Google Scholar 

  • Scarpella E., Marcos D., Firml J. and Berleth T. 2006 Control of leaf vascular patterning by polar auxin transport. Genes Dev. 20, 1015–1027.

    Article  PubMed  CAS  Google Scholar 

  • Seigfried K. R., Eshed Y., Baum S. F., Otsuga D., Dress G. N. and Bowman J. L. 1999 Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126, 4117–4128.

    Google Scholar 

  • Sieberer T. and Leyser O. 2006 Auxin transport, but in which direction. Science 312, 858–860.

    Article  PubMed  CAS  Google Scholar 

  • Shani E., Burko Y., Ben-Yaakov L., Berger Y., Amsellem Z., Goldshmidt A., et al. 2009 Stage-specific regulation of Solanum lycopersicum leaf maturation by Class? KNOTTED1-LIKE HOMEOBOX proteins. Plant Cell 21, 3078–3092.

    Article  PubMed  CAS  Google Scholar 

  • Sharma B. 1981 Genetic pathway of foliage development in Pisum sativum. Pulse Crops Newslett. 1, 26–32.

    Google Scholar 

  • Sharma V., Sinha A. K., Chaudhary S., Priyadarshini A., Tripathi B. N. and Kumar S. 2012 Genetic analysis of structure and function of stipules in pea Pisum sativum. Proc. Ind. Nat. Sci. Acad. 78, 9–34.

    Google Scholar 

  • Takada S., Hibara K., Ishida J. and Tasaka M. 2001 The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128, 1127–1135.

    PubMed  CAS  Google Scholar 

  • Tattersall A. D., Turner L., Knox M. R., Ambrose M. J., Ellis T. H. N. and Hofer J. M. I. 2005 The mutant crispa reveals multiple roles for PHANTASTICA in pea compound leaf development. Plant Cell 17, 1046–1060.

    Article  PubMed  CAS  Google Scholar 

  • Taylor S., Hofer J. and Murfet I. 2001 Stamina pistilloida, the pea ortholog of Fim and UFO, is required for normal development of flowers, inflorescences and leaves. Plant Cell 13, 31–46.

    PubMed  CAS  Google Scholar 

  • Timmermans M. C. P., Schultes N. P., Jankovsky J. P. and Nelson T. 1998 Leafbladeless 1 required for dorsiventrality of lateral organs in maize. Development 125, 2813–2823.

    PubMed  CAS  Google Scholar 

  • Townsley B. T. and Sinha N. R 2012 A new development: evolving concepts in leaf ontogeny. Ann. Rev. Plant Biol. 63, 535–562.

    Article  CAS  Google Scholar 

  • Veit B. 2009 Hormone mediated regulation of the shoot apical meristem. Plant Mol. Biol. 69, 397–408.

    Article  PubMed  CAS  Google Scholar 

  • Vroemen C. W., Mordhorst A. P., Albrecht C., Kwaaitaal M. A. and de Vries S. C. 2003 The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell 15, 1563–1577.

    Article  PubMed  CAS  Google Scholar 

  • Wenkel S., Emery J., Hou B. H., Evaus M. M., Barton M. K. 2007 A feedback regulatory module formed by LITTLE ZIPPER and HD-ZIP III genes. Plant Cell 19, 3379–3390.

    Article  PubMed  CAS  Google Scholar 

  • Waites R., Selvadurai H. R., Oliver J. R. and Hudson A. 1998 The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 93, 779–789.

    Article  PubMed  CAS  Google Scholar 

  • Wang H., Chan J., Wen J., Tadege M., Li G., Liu Y., et al. 2008 Control of leaf development by FLORICAULA/LEAFY ortholog SINGLE LEAFLET 1 in Medicago truncatula. Plant Physiol. 146, 1759–1772.

    Article  PubMed  CAS  Google Scholar 

  • Wenzel C. L., Schuetz M., Yu Q. and Mattsson J. 2007 Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana. Plant J. 49, 387–389.

    Article  PubMed  CAS  Google Scholar 

  • Williams M. E., Mundy J., Kay S. A. and Chua N. H. 1990 Differential expression of two related organ-specific genes in pea. Plant Mol. Biol. 14, 765–774.

    Article  PubMed  CAS  Google Scholar 

  • Xu L., Xu Y., Dong A., Sun Y., Pi L. and Huang H 2003 Novel as1 and as2 defects in leaf adaxial-abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERECTA functions in specifying leaf adaxial identity. Development 130, 4097–4107.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T. and Tsukaya H. 2010 Evolutionary and developmental studies of unifacial leaves in monocot: Juncus as a model system. J. Plant Res. 123, 35–45.

    Article  PubMed  Google Scholar 

  • Yang L., Liu Z., Lu F., Dong A. and Huang H. 2006 SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J. 47, 841–850.

    Article  PubMed  CAS  Google Scholar 

  • Yaxley J. L., Jablonski W. and Reid J. B. 2001 Leaf and flower development in pea (Pisum sativum L): mutants cochleata and unifoliata. Ann. Bot. 88, 225–234.

    Article  CAS  Google Scholar 

  • Zhou G. K., Kubo M., Zhong R., Demura T. and Ye Z. H. 2007 Overexpression of miR165 affects apical meristem formation, organ polarity establishment and vascular development in Arabidopsis. Plant Cell Physiol. 48, 391–404.

    Article  PubMed  CAS  Google Scholar 

  • Zomlefer W. B. 1994 Guide to flowering plant families. University of North Carolina Press. Chapel Hill, USA.

    Google Scholar 

Download references

Acknowledgements

The financial support of Indian National Science Academy and Council of Scientific and Industrial Research (CSIR) in the form of Scientistships to SK, and facilities provided by NIPGR are gratefully acknowledged. RKM, SC and AK, RK and VS respectively received postgraduate fellowship support from CSIR, Department of Biotechnology, and SKA Institution for Research, Education and Development. The technical help of Sanjay Kumar Rai, Vinod Kumar and Sunil Kumar is also thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SUSHIL KUMAR.

Additional information

[Kumar S., Mishra R. K., Kumar A., Chaudhary S., Sharma V. and Kumari R. 2012 Genetic interaction and mapping studies on the leaflet development (lld) mutant in Pisum sativum. J. Genet. 91, xx–xx]

Rights and permissions

Reprints and permissions

About this article

Cite this article

KUMAR, S., MISHRA, R.K., KUMAR, A. et al. Genetic interaction and mapping studies on the leaflet development (lld) mutant in Pisum sativum . J Genet 91, 325–342 (2012). https://doi.org/10.1007/s12041-012-0197-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-012-0197-8

Keywords

Navigation