Skip to main content

Advertisement

Log in

Three-dimensional Moho depth model of the eastern Indian shield and its isostatic implications

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The Singhbhum Craton, Singhbhum Mobile Belt along its northern, eastern, and western edges, and Chotanagpur Gneissic Complex farther north are all parts of the Precambrian eastern Indian shield. Modern isotope dates and associated geological evidence suggest that these crustal units may be one cratonic block that developed sequentially between 3.55 and 1.00 Ga. The region has always been the focus of numerous geoscientific studies due to its complex evolutionary history and abundant mineralisation. We used the terrestrial gravity data from the Gravity Map Series of India and the EGM2008 global gravity dataset in the Bay of Bengal to model the 3D Moho geometry of the eastern Indian shield and the adjoining Bay of Bengal by inverting the gravity data. The Bouguer gravity data were filtered at several levels before applying the Parker–Oldenburg iterative inversion procedure. The Moho depth measurement is then computed by presuming a constant density contrast. The effects of sediments were eliminated from gravity data by collecting thickness and density details of the sediment from a worldwide sedimentary thickness map CRUST1.0 and applying a correction comparable to the Bouguer correction that uses the density difference of 0.24 g/cm3. Spectral analysis is used to fix a reference depth level and the low-frequency range associated with Moho deflection in the Bouguer anomaly filtered for sedimentary overburden. We subsequently executed the gravity inversion of a basic two-layer structure having a constant density difference of 0.40 g/cm3 across the Moho fixed at an average depth of 35 km. The gravity inversion analysis shows that the Moho depth within the Bay of Bengal is between 18 and 24 km. In the continent, the Moho depth varies from 34 km near the coastline to 38 km towards the Singhbhum Craton and Chhotanagpur Gneiss Complex. In the northern portion of the region, the Moho depth increases to over 40 km underneath the convergence of the Mahanadi–Damodar Gondwana basins and the Ganga foreland basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5 
Figure 6
Figure 7

Similar content being viewed by others

References

  • Airy G B 1855 On the computations of the effect of the attraction of the mountain masses as disturbing the apparent astronomical latitude of stations in geodetic surveys; Trans. Roy. Soc. London Ser. B 145 101–104.

    Google Scholar 

  • Aitken A R A 2010 Moho geometry gravity inversion experiment (MoGGIE): A refined model of the Australian Moho, and its tectonic and isostatic implications; Earth Planet. Sci. Lett. 297 71–83.

    Article  Google Scholar 

  • Anil Kumar, Dayal A M and Padmakumari V M 2003 Kimberlite from Rajmahal magmatic province: Sr–Nd–Pb isotopic evidence for Kerguelen plume derived magmas; Geophys. Res. Lett. 30(20) 2053, https://doi.org/10.1029/2003GL018462.

    Article  Google Scholar 

  • Arasada R C, Rao G S and Anand R 2022 Crustal architecture of North Singhbhum Mobile Belt, eastern Indian shield: Constraints from two-dimensional and three-dimensional modelling of Bouguer gravity and aeromagnetic data; Geol. J. 2022 1–18, https://doi.org/10.1002/gj.4434.

    Article  Google Scholar 

  • Baksi A K, Barman T R, Paul D K and Ferrar E 1987 Widespread Early Cretaceous flood basalt volcanism in eastern India: Geochemical data from the Rajmahal–Bengal–Sylhet Traps; Chem. Geol. 63(1–2) 133–141.

    Article  Google Scholar 

  • Bassin C, Laske G and Masters T G 2000 The current limits of resolution for surface wave tomography in North America; EoS Trans. AGU 81 F897.

    Google Scholar 

  • Behera L, Sain K and Reddy P R 2004 Evidence of underplating from seismic and gravity studies in the Mahanadi delta of eastern India and its tectonic significance; J. Geophys. Res. 109 B12311, https://doi.org/10.1029/2003JB002764.

    Article  Google Scholar 

  • Bhattacharyya D S 1992 Early proterozoic metallogeny, tectonics and geochronology of the singhbhum Cu–U belt, eastern India; Precamb. Res. 58(1–4) 71–83.

    Article  Google Scholar 

  • Bhattacharya B B and Shalivahan 2002 The electric Moho underneath Eastern Indian Craton; Geophys. Res. Lett. 29(10) 1376, https://doi.org/10.1029/2001GL014062.

    Article  Google Scholar 

  • Bhattacharya H N and Mahapatra S 2008 Evolution of the Proterozoic rift margin sediments-North Singhbhum Mobile belt, Jharkhand-Orissa, India; Precamb. Res. 162(1–2) 302–316.

    Article  Google Scholar 

  • Bhattacharya S N, Suresh G and Mitra S 2009 Lithospheric S-wave velocity structure of the Bastar craton, Indian peninsula from surface wave phase-velocity measurements; Bull. Seismol. Soc. Am. 99 2502–2508.

    Article  Google Scholar 

  • Bhattacharya D K, Mukherjee D and Barla V C 2010 Komatiite within Chhotanagpur Gneissic Complex at Semra, Palamau district, Jharkhand: Petrological and geochemical fingerprints; J. Geol. Soc. India 76(6) 589–606.

    Article  Google Scholar 

  • Bhowmik S 1997 Multiple episodes of tectonothermal processes in the Eastern Ghats granulite belt; Proc. Indian Acad. Sci. (Earth Planet. Sci.) 106(3) 131–146.

    Article  Google Scholar 

  • Bielik M 1988 A preliminary stripped gravity map of the Pannonian Basin; Phys. Earth Planet. Int. 51(1–3) 185–189.

    Article  Google Scholar 

  • Block A E, Bell R E and Studinger M 2009 Antarctic crustal thickness from satellite gravity: Implications for the transantarctic and G amburtsev subglacial mountains; Earth Planet. Sci. Lett. 288(1) 194–203.

    Article  Google Scholar 

  • Bose M K 2009 Precambrian mafic magmatism in the Singhbhum craton, Eastern India; J. Geol. Soc. India 73 13–135.

    Article  Google Scholar 

  • Ch Rao N, Rao N P, Ravi Kumar M, Prasanna S and Srinagesh D 2015 Structure and tectonics of the Bay of Bengal through waveform modeling of the 21 May 2014 earthquake of magnitude 6.0; Seismol. Res. Lett. 86 378–384.

    Article  Google Scholar 

  • Chalapathi Rao N V, Lehmann B, Mainkar D and Belyatsky B 2011 Petrogenesis of the end-Cretaceous diamondiferous Behradih orangeite pipe: Implication for mantle plume–lithosphere interaction in the Bastar craton, Central India; Contrib. Mineral. Petrol. 161(5) 721–742.

    Article  Google Scholar 

  • Chalapathi Rao N V, Srivastava R K, Sinha A K and Ravikant V 2014 Petrogenesis of Kerguelen mantle plume-linked Early Cretaceous ultrapotassic intrusive rocks from the Gondwana sedimentary basins, Damodar Valley, Eastern India; Earth Sci. Rev. 136 96–120.

    Article  Google Scholar 

  • Chapin D A 1996 A deterministic approach toward isostatic gravity residuals – A case study from South America; Geophysics 61 1022–1033.

    Article  Google Scholar 

  • Chaudhuri T, Wan Y, Mazumder R, Ma M and Liu D 2018 Evidence of enriched, Hadean mantle reservoir from 4.2 to 4.0 Ga zircon xenocrysts from Paleoarchean TTGs of the Singhbhum craton, eastern India; Sci. Rep. 8 7069, https://doi.org/10.1038/s41598-018-25494-6.

    Article  Google Scholar 

  • Christensen N I and Mooney W D 1995 Seismic velocity structure and composition of the continental crust: A global view; J. Geophys. Res. 100 9761–9788.

    Article  Google Scholar 

  • Das M K, Agrawal M, Gupta R K and Gautam J L 2019 Lithospheric seismic structure beneath two broadband station sites of the eastern part of Chhotanagpur Plateau: New constraints from receiver functions and dispersion curves; Phys. Earth Planet. Int. 287 51–64.

    Article  Google Scholar 

  • Davies H L, Sun S S, Frey F A, Gautier I, McCulloch M T, Price R C, Bassias Y, Klootwijk C T and Leclaire L 1989 Basalt basement from the Kerguelen Plateau and the trail of the Dupal plume; Contrib. Mineral. Petrol. 103 457–469.

    Article  Google Scholar 

  • Dey S, Topno A, Liu Y and Zong K 2017 Generation and evolution of Palaeoarchaean continental crust in the central part of the Singhbhum craton, eastern India; Precamb. Res. 298 268–291.

    Article  Google Scholar 

  • Ebbing J, Braitenberg C and Wienecke S 2007 Insights into the lithospheric structure and the tectonic setting of the Barents Sea region from isostatic considerations; Geophys. J. Int. 171 1390–1403, https://doi.org/10.1111/j.1365-246X.2007.03602.x.

    Article  Google Scholar 

  • French J E, Heaman L M, Chacko T and Srivastava R K 2008 1891–1883 Ma Southern Bastar–Cuddapah mafic igneous events, India: A newly recognised large igneous province; Precamb. Res. 160(3–4) 308–322.

    Article  Google Scholar 

  • Gaina C, Müller R D, Brown B, Ishihara T and Ivanov S 2007 Breakup and early seafloor spreading between India and Antarctica; Geophys. J. Int. 170(1) 151–169.

    Article  Google Scholar 

  • Ghose N C and Chatterjee N I 2008 Petrology, tectonic setting and source of dykes and related magmatic bodies in the Chotanagpur Gneissic Complex, Eastern India; In: Indian Dykes: Geochemistry, Geophysics and Geochronology (eds) Srivastava R K, Sivaji C and Chalapathi Rao N V (Narosa Publ. House Pvt. Ltd.: New Delhi, India), pp. 471–493.

  • GMSI 2006 Gravity Map Series of India-2006 on 1:2,000,000 scale; Geological Survey of India and National Geophysical Research Institute Publication, Hyderabad, India.

    Google Scholar 

  • Gómez-Ortiz D and Agarwal B N P 2005 3DINVER.M: A MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker–Oldenburg’s algorithm; Comput. Geosci. 31 513–520.

    Article  Google Scholar 

  • GSI 1998 Geological Map of India on 1:2,000,000 scale; Geol. Surv. India Publication, Kolkata, India.

  • GSI 2000 Tectonic Atlas of India and its Environs on 1:1,000,000 scale; Geol. Surv. India Publication, Kolkata, India.

  • Hacker B R, Kelemen P B and Behn M D 2015 Continental lower crust; Ann. Rev. Earth Planet. Sci. 43(1) 167–205.

    Article  Google Scholar 

  • Hahn A, Kind E G and Mishra D C 1976 Depth estimation of magnetic sources by means of Fourier amplitude spectra; Geophys. Prospect. 24 287–306.

    Article  Google Scholar 

  • Haldar C, Kumar P, Ravi Kumar M, Ray L and Srinagesh D 2018 Seismic evidence for secular evolution of Archaean crust in the Indian field; Precamb. Res. 304 12–20.

    Article  Google Scholar 

  • Hammer S 1963 Deep gravity interpretation by stripping; Geophysics 28(3) 369–378.

    Article  Google Scholar 

  • Hofman A and Mazumdar R 2015 A review of the current status of the Older Metamorphic Group and Older Metamorphic Tonalite Gneiss: Insights into the Paleoarchaean history of the Singhbhum craton, India; Geol. Soc. London Memoirs 43 103–107.

    Article  Google Scholar 

  • Jain A K, Banerjee D M and Kale V S 2020 Tectonics of the Indian subcontinent; Springer, Cham, Switzerland, https://doi.org/10.1007/978-3-030-42845-7.

    Book  Google Scholar 

  • Jiménez-Munt I, Fernández M, Vergés J and Platt J P 2008 Lithosphere structure underneath the Tibetan Plateau inferred from elevation, gravity and geoid anomalies; Earth Planet. Sci. Lett. 267 276–289, https://doi.org/10.1016/j.epsl.2007.11.045.

    Article  Google Scholar 

  • Kayal J R, Srivastava V K, Kumar P, Chatterjee R and Khan P K 2011 Evolution of crustal and upper mantle structures using receiver function analysis: ISM broadband observatory data; J. Geol. Soc. India 78 76–80.

    Article  Google Scholar 

  • Khan A A and Chouhan R K S 1996 The crustal dynamics and the tectonic trends in the Bengal Basin; J. Geodyn. 22(3–4) 267–286.

    Article  Google Scholar 

  • Kosarev G L, Oreshin S I, Vinnik L P, Kiselev S G, Dattatrayam R S, Suresh G and Baidya P R 2013 Heterogeneous lithosphere and the underlying mantle of the Indian subcontinent; Tectonophys. 592 175–186.

    Article  Google Scholar 

  • Kumar A, Parashuramulu V, Shankar R and Besse J 2017 Evidence for a Neoarchean LIP in the Singhbhum craton, eastern India: Implications to Vaalbara supercontinent; Precamb. Res. 292 163–174.

    Article  Google Scholar 

  • Kumar A, Mukhopadhyay S, Kumar N and Baidya P R 2018 Lateral variation in crustal and mantle structure in Bay of Bengal based on surface wave data; J. Geodyn. 113 32–42.

    Article  Google Scholar 

  • Laske G, Masters G, Ma Z and Pasyanos M E 2012 CRUST1.0: An updated Global Model of Earth's Crust; EGU General Assembly, held 22–27 April, 2012 in Vienna, Austria, 3743p.

  • Li Y and Oldenburg D W 1998 3-D inversion of gravity data; Geophysics 63(1) 109–119.

    Article  Google Scholar 

  • Mahadevan T M 2002 Geology of Bihar and Jharkhand; Geol. Soc. India Publication, Bangalore, India, 563p.

  • Mahato S, Goon S, Bhattacharya A, Mishra B and Bernhardt Heinz-J 2008 Thermo-tectonic evolution of the North Singhbhum Mobile Belt (eastern India): A view from the western part of the belt; Precamb. Res. 162(1–2) 102–127, https://doi.org/10.1016/j.precamres.2007.07.015.

    Article  Google Scholar 

  • Mahoney J J, Macdougall J D, Lugmair G W and Gopalan K 1983 Kerguelen hotspot source for Rajmahal traps and Ninetyeast Ridge?; Nature 303(5916) 385–389.

    Article  Google Scholar 

  • Mall D M, Rao V K and Reddy P R 1999 Deep sub-crustal features in the Bengal basin: Seismic signatures for plume activity; Geophys. Res. Lett. 26 2545–2548.

    Article  Google Scholar 

  • Mandal P 2017a Group velocity dispersion characteristics and one-dimensional regional shear velocity structure of the eastern Indian craton; J. Asian Earth Sci. 134 231–243.

    Article  Google Scholar 

  • Mandal P 2017b Lithospheric thinning in the Eastern Indian Craton: Evidence for lithospheric delamination below the Archean Singhbhum Craton; Tectonophys. 698 91–108.

    Article  Google Scholar 

  • Mandal P and Biswas K 2016 Teleseismic receiver functions modeling of the eastern Indian craton; Phys. Earth Planet. Int. 258 1–14.

    Article  Google Scholar 

  • Mandal P, Kumar P, Sreenivas B, Babu E V S S K and Rao Y J B 2021 Variations in crustal and lithospheric structure across the Eastern Indian Shield from passive seismic source imaging: Implications to changes in the tectonic regimes and crustal accretion through the Precambrian; Precamb. Res. 360 1–19, https://doi.org/10.1016/j.precamres.2021.106207.

    Article  Google Scholar 

  • Miller S R, Mueller J G, Meert P A, Kamenov G D, Pivarunas A F, Sinha A K and Pandit M K 2018 Detrital zircons reveal evidence of Hadean crust in the Singhbhum craton, India; J. Geol. 126 541–552.

    Article  Google Scholar 

  • Miroslav B, Michael R and Michael L 2013 Tutorial: The gravity stripping process as applied to gravity interpretation in the eastern Mediterranean; The Leading Edge April 2013 260–265.

  • Mishra B 2013 Geology and stratigraphy of Odisha; Geo-chronicle II 8–24.

    Google Scholar 

  • Mitra S, Bhattacharya S N and Nath S K 2008 Crustal structure of the Western Bengal Basin from joint analysis of teleseismic receiver functions and Rayleigh-wave dispersion; Bull. Seismol. Soc. Am. 98(6) 2715–2723.

    Article  Google Scholar 

  • Mitra S, Priestley K, Acton C and Gaur V K 2011 Anomalous surface wave dispersion and the enigma of ‘continental-like’ structure for the Bay of Bengal; J. Asian Earth Sci. 42 1243–1255.

    Article  Google Scholar 

  • Mondal S K, Ripley E M, Li C and Frei R 2006 The genesis of Archaean chromitites from the Nuasahi and Sukinda massifs in the Singhbhum Craton, India; Precamb. Res. 148(1–2) 45–66, https://doi.org/10.1016/j.precamres.2006.04.001.

    Article  Google Scholar 

  • Mooney W D, Laske G and Masters T G 1998 CRUST 5.1: A global crustal model at 5° × 5°; J. Geophys. Res. 103B 727–747.

    Article  Google Scholar 

  • Mukhopadhyay D 2001 The Archaean nucleus of Singhbhum: The present state of knowledge; Gondwana Res. 4(3) 307–318.

    Article  Google Scholar 

  • Mukhopadhyay D and Matin A 2020 Recent studies on the Singhbhum Craton; Proc. Indian Nat. Sci. Acad. 86(1) 1–33.

    Google Scholar 

  • Mukhopadhyay M, Verma R K and Ashraf M H 1986 Gravity field and structures of the Rajmahal Hills: Example of the Paleo-Mesozoic continental margin in eastern India; Tectonophys. 131(3–4) 353–367.

    Article  Google Scholar 

  • Mukhopadhyay J, Beukes N J, Armstrong R A, Zimmermann U, Ghosh G and Medda R A 2008 Dating the oldest greenstone in India: A 3.51-Ga precise U–Pb SHRIMP zircon age for dacitic lava of the southern Iron Ore Group, Singhbhum craton; J. Geol. 116(5) 449–461.

    Article  Google Scholar 

  • Nelson D R, Bhattacharya H N, Thern E R and Altermann W 2014 Geochemical and ion-microprobe U–Pb zircon constraints on the Archaean evolution of Singhbhum Craton, eastern India; Precamb. Res. 255 412–432.

    Article  Google Scholar 

  • Niraj Kumar, Singh A P, Gupta S B and Mishra D C 2004 Gravity signature, crustal architecture and collision tectonics of Eastern Ghats Mobile Belt; J. Indian Geophys. Union 8 97–106.

    Google Scholar 

  • Niraj Kumar, Singh A P and Singh B 2011 Insights into the crustal structure and geodynamic evolution of the Southern Granulite Terrain of India from isostatic considerations; Pure Appl. Geophys. 168(10) 1781–1798.

    Article  Google Scholar 

  • Oldenburg D W 1974 The inversion and interpretation of gravity anomalies; Geophysics 39(4) 526–536, https://doi.org/10.1190/1.1440444.

    Article  Google Scholar 

  • O’Reilly S Y and Griffin W 2013 Moho vs crust-mantle boundary: Evolution of an idea; Tectonophys. 609 535–546, https://doi.org/10.1016/j.tecto.2012.12.031.

    Article  Google Scholar 

  • Parker R L 1972 The rapid calculation of potential anomalies; Geophys. J. Roy. Astron. Soc. 31 447–455.

    Article  Google Scholar 

  • Pavlis N K, Holmes S A, Kenyon S C and Factor J K 2012 The development and evaluation of the Earth Gravitational Model 2008 (EGM2008); J. Geophys. Res. 117 B04406, https://doi.org/10.1029/2011JB008916.

    Article  Google Scholar 

  • Prakash Kumar, Yuan X, Ravi Kumar M, Kind R, Li X and Chadha R K 2007 The rapid drift of the Indian tectonic plate; Nature 449, https://doi.org/10.1038/nature06214.

  • Prakash Kumar, Ravi Kumar M, Srijayanthi G, Arora K, Srinagesh D, Chadha R K and Sen M K 2013 Imaging the Lithosphere-Asthenosphere boundary of the Indian plate using converted wave technique; J. Geophys. Res. 118 5307–5319, https://doi.org/10.1002/jgrb.50366.

  • Prasanna H M I, Chen W and Iz H B 2013 High resolution local Moho determination using gravity inversion: A case study in Sri Lanka; J. Asian Earth Sci. 74 62–70, https://doi.org/10.1016/j.jseaes.2013.06.005.

    Article  Google Scholar 

  • Pratt J H 1855 On the attraction of the Himalaya Mountains and of the elevated regions beyond upon the plumb-line in India; Trans. Roy. Soc. London Ser. B 145.

  • Rabbel W, Kaban M and Tesauro M 2013 Contrasts of seismic velocity, density and strength across the Moho; Tectonophys. 609 437–455.

    Article  Google Scholar 

  • Radhakrishna M, Subrahmanyam C and Damodharan T 2010 Thin oceanic crust below Bay of Bengal inferred from 3-D gravity interpretation; Tectonophys. 493 93–105.

    Article  Google Scholar 

  • Rajasekhar R P and Mishra D C 2008 Crustal structure of Bengal basin and Shillong Plateau: Extension of Eastern Ghat and Satpura mobile belts to Himalayan fronts; Gondwana Res. 14 523–534.

  • Rambabu H V 1997 Average crustal density of the Indian lithosphere – an inference from gravity anomalies and deep seismic soundings; J. Geodyn. 23(1) 1–4.

    Article  Google Scholar 

  • Ravi Kumar M, Saul J, Sarkar D, Kind R and Shukla A K 2001 Crustal structure of the Indian Shield: New constraints from teleseismic receiver functions; Geophys. Res. Lett. 28(7) 1339–1342.

    Article  Google Scholar 

  • Rekha S, Upadhyay D, Bhattacharya A, Kooijman E, Goon S, Mahato S and Pant N C 2011 Lithostructural and chronological constraints for tectonic restoration of Proterozoic accretion in the Eastern Indian Precambrian shield; Precamb. Res. 187(3–4) 313–333.

    Article  Google Scholar 

  • Roy A B and Bhattacharya H N 2012 Tectonostratigraphic and geochronologic reappraisal constraining the growth and evolution of Singhbhum Archaean craton, Eastern India; J. Geol. Soc. India 80 455–469.

    Article  Google Scholar 

  • Royer J Y, Sclater J G, Sandwell D T, Cande S C, Schlich R, Munschy M, Dyment J, Fisher R L, Muller R D, Coffin M F, Patriat P and Bergh H W 1992 Indian Ocean plate reconstructions since the late Jurassic; In: Synthesis of results from scientific drilling in the Indian Ocean (eds) Duncan et al., Geophys. Monograph No. 70, American Geophys. Union, pp. 471–475.

  • Saha A K 1994 Crustal evolution of Singhbhum north Orissa eastern India; Geol. Soc. India Memoir, 328p.

  • Satya Kumar A, Pandey A K, Singh A P and Tiwari V M 2022 Delineation of structural and tectonic features in the Mahanadi basin, eastern India: New insights from remote sensing and land gravity data; J. Asian Earth Sci. 227 10516.

    Google Scholar 

  • Shalivahan and Bhattacharya B B 2005 Electrical anisotropy of asthenosphere in a region of window to mantle underneath Eastern Indian Craton; Phys. Earth Planet. Inter. 152 43–61.

    Article  Google Scholar 

  • Shalivahan, Bhattacharya B B, Chalapathi Rao N V and Maurya V P 2014 Thin lithosphere asthenosphere boundary beneath Eastern Indian craton; Tectonophys. 612–613 128–133, https://doi.org/10.1016/j.tecto.2013.11.036.

    Article  Google Scholar 

  • Sharma R 2009 Cratons and Fold Belts of India; Springer, 304p.

  • Shin Y H, Xu H, Braitenberg C, Fang J and Wang Y 2007 Moho undulations beneath Tibet from GRACE-integrated gravity data; Geophys. J. Int. 170 971–985, https://doi.org/10.1111/j.1365-246X.2007.03457.x.

    Article  Google Scholar 

  • Singh A P, Niraj Kumar and Singh B 2004 Magmatic underplating beneath the Rajmahal traps: Gravity signatures and derived 3-D configuration; Proc. Indian Acad. Sci. (Earth Planet. Sci.) 113(4) 759–769.

  • Singh A, Singh C and Kennett B L N 2015a A review of crust and upper mantle structure beneath the Indian subcontinent; Tectonophys. 644–645 1–21.

    Article  Google Scholar 

  • Singh A P, Niraj Kumar and Zeyen H 2015b Three-dimensional lithospheric mapping of the Singhbhum Protocontinent, India: A multi-parametric inversion approach; Tectonophys. 665 164–176, https://doi.org/10.1016/j.tecto.2015.09.038.

    Article  Google Scholar 

  • Singh A P, Niraj Kumar, Nageswara Rao B and Tiwari V M 2021 Geopotential evidence of a missing lithospheric root beneath the Eastern Indian Shield: An integrated approach; Precamb. Res. 356(106–116) 1–14, https://doi.org/10.1016/j.precamres.2021.106116.

    Article  Google Scholar 

  • Spector A and Grant F S 1970 Statistical models for interpreting aeromagnetic data; Geophysics 35 293–302.

    Article  Google Scholar 

  • Sreenivas B, Dey S, Bhaskar Rao Y J, Vijaya Kumar T, Babu E V S S K, Williams and Ian S 2019 A new cache of Eoarchaean detrital zircons from the Singhbhum craton, eastern India and constraints on early Earth geodynamics; Geosci. Frontiers 10(4) 1359–1370.

  • Srinivasa Rao G, Radhakrishna M and Murthy K S R 2015 A seismotectonic study of the 21 May 2014 Bay of Bengal intraplate earthquake: Evidence of onshore-offshore tectonic linkage and fracture zone reactivation in the northern Bay of Bengal; Nat. Hazards 78 895–913.

    Article  Google Scholar 

  • Srivastava R K, Rao N C and Sinha A K 2009 Cretaceous potassic intrusives with affinities to aillikites from Jharia area: Magmatic expression of metasomatically veined and thinned lithospheric mantle beneath Singhbhum Craton, Eastern India; Lithos 112 407–418.

    Article  Google Scholar 

  • Srivastava R K, Sinha A K and Kumar S 2012 Geochemical characteristics of Mesoproterozoic metabasite dykes from the Chhotanagpur Gneissic Terrain, eastern India: Implications for their emplacement in a plate margin tectonic environment; J. Earth Syst. Sci. 121(2) 509–523.

    Article  Google Scholar 

  • Srivastava R K, Kumar S, Sinha A K and Rao N C 2013 Petrology and geochemistry of high-titanium and low-titanium mafic dykes from the Damodar valley, Chhotanagpur Gneissic Terrain, eastern India and their relation to Cretaceous mantle plume(s); J. Asian Earth Sci. 84 34–50.

    Article  Google Scholar 

  • Srivastava R K, Söderlund U, Ernst R E, Mondal S K and Samal A K 2019 Precambrian mafic dyke swarms in the Singhbhum craton (eastern India) and their links with dyke swarms of the eastern Dharwar craton (southern India); Precamb. Res. 329 5–17.

    Article  Google Scholar 

  • Steffen R, Steffen H and Jentzsch G 2011 A three-dimensional Moho depth for the Tien Shan from EGM2008 gravity data; Tectonics 30 TC5019, https://doi.org/10.1029/2011TC002886.

  • Tenzer R, Bagherbandi M and Vajda P 2013 Global model of the upper mantle lateral density structure based on combining seismic and isostatic models; Geosci. J. 17(1) 65–73.

    Article  Google Scholar 

  • Tirel C, Gueydan F, Tiberi C and Brun J P 2004 Aegean crustal thickness inferred from gravity inversion, geodynamic implications; Earth Planet. Sci. Lett. 228 267–280.

    Article  Google Scholar 

  • Tiwari S and Jassal G S 2003 Origin and evolution of the Garo-Rajmahal Gap; J. Geol. Soc. India 57 389–403.

    Google Scholar 

  • Tiwari V M, Rao M B S V, Mishra D C and Singh B 2006 Crustal structure across Sikkim, NE Himalaya from new gravity and magnetic data; Earth Planet. Sci. Lett. 247 61–69.

    Article  Google Scholar 

  • Valdiya K S 2016 Geological Terranes of Indian Continent; In: The Making of India. Society of Earth Scientists Series, Springer, Cham., https://doi.org/10.1007/978-3-319-25029-8_2.

  • Van der Meijde M, Julia J and Assumpçao M 2013 Gravity derived Moho for South America; Tectonophys. 609 456–467, https://doi.org/10.1016/j.tecto.2013.03.023.

    Article  Google Scholar 

  • Vasanthi A, Singh A P, Kumar N, Rao B N, Satyakumar A V and Santosh M 2021 Crust-mantle structure and lithospheric destruction of the oldest craton in the Indian shield; Precamb. Res. 362 106280.

    Article  Google Scholar 

  • Vu D T, Bonvalot S, Bruinsma S and Bui L K 2021 A local lithospheric structure model for Vietnam derived from a high-resolution gravimetric geoid; Earth Planets Space 73 92, https://doi.org/10.1186/s40623-021-01415-2.

    Article  Google Scholar 

  • Wang Q, Bagdassarov N and Ji S 2013 The Moho as a transition zone: A revisit from seismic and electrical properties of minerals and rocks; Tectonophys. 609 395–422.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Director, CSIR-National Geophysical Research Institute, Hyderabad, for granting permission to publish this paper (Library reference id: NGRI/Lib/2022/Pub-28). We also thank the Editor and two anonymous reviewers for their critical comments and suggestions that have helped significantly to improve the quality of the manuscript. Financial support for the research work is provided through the SIMO project (MLP-FBR-0006), funded by CSIR, New Delhi and forms a part of the PhD thesis work of VCP. The work is financially supported by CSIR-SIMO program (MLP-FBR-0006).

Author information

Authors and Affiliations

Authors

Contributions

V C Patel: Data curation, formal analysis and preparation of the figures. A Jarial: Data processing and curation. Niraj Kumar: Draft writing and editing. B Nageswara Rao: Data collection and processing. A P Singh: Conceptualization, supervision and project administration.

Corresponding author

Correspondence to Niraj Kumar.

Additional information

Communicated by Somnath Dasgupta

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, V.C., Jarial, A., Kumar, N. et al. Three-dimensional Moho depth model of the eastern Indian shield and its isostatic implications. J Earth Syst Sci 132, 69 (2023). https://doi.org/10.1007/s12040-023-02081-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-023-02081-6

Keywords

Navigation