Skip to main content
Log in

Lamproites of Kayla pipe and their mantle xenocrysts, SE Aldan shield, Russia: Geochemistry and petrology

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Origin of abundant alkaline and related lamproite massifs and dykes in Aldan shield have no explanation and the geochemistry of rocks and their xenocrysts is used for the explanation. Bulk-rock geochemistry, mineral chemistry data of the Kayla lamproites of Russia and mineral chemical data (trace and rare elements) of the mantle xenocrysts found in these lamproites was studied using ICP MS and electron microprobe analyses (EPMA). The trace element spectrum of Kayla tuffs and breccias show the similarity with the olivine lamproites and belong to the orogenic type according to Th–U–Nb systematics. Primitive mantle normalized trace element (TRE) spider diagrams show right-leaning patterns with the peaks in large ion lithophile elements Sr, Pb, U, and troughs in Ta, Nb suggesting melting of original peridotites mixed with the ancient EMI (according to Nd, Sr isotopes) source probably belonging to eclogites or lower crust. The age of the emplacement is 132–134 Ma, similar to the Chompolo lamprophyres and many other alkaline Aldan complexes. Thermo-barometric estimation from Cr-diopsides and chromites xenocrysts suggest the origin from the spinel-garnet transition in the lithospheric mantle region. The P–T estimates derived from low-Cr-clinopyroxene xenocrysts, and related to lamproites show a high heat flow of 90 mW/m2 due to interaction with the plume-related magma. The Cr-diopsides and chromites give 45 mW/m2 geotherm similar to regional heat flow. The chondrite normalized rare earth element (REE) pattern for chrome-diopsides is steeper, compared to the low-chrome varieties. Primitive mantle normalized spidergram of Cr-diopsides displays peaks for Sr, U, and Th, and deep troughs of Nd, Nb, Ta. REE. The trace element spider diagrams of both types of xenocrysts show that they were equilibrated with the lamproitic melts and reconstructed parental melts of low-Cr-clinopyroxene coincides with the lamproite spectrums.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Adam J, Green T H and Sie S H 1993 Proton microprobe determined partitioning of Rb, Sr, Ba, Y, Zr, Nb and Ta between experimentally produced amphiboles and silicate melts with variable F content; Chem. Geol. 109 29–49, https://doi.org/10.1016/0009-2541(93)90060-V.

    Article  Google Scholar 

  • Artemieva I M and Mooney W D 2001 Thermal structure and evolution of Precambrian lithosphere: A global study; J. Geophys. Res. 106 16,387–16,414.

    Article  Google Scholar 

  • Atkinson W, Smith C and Boxer G 1984 The discovery and geology of the Argyle diamond deposits, Kimberley, Western Australia; In: Proceedings of the Darwin Conference, Australasian Institute of Mining and Metallurgy, Darwin City, Australia, pp. 141–149.

  • Ashchepkov I, Gerasimov P, Khmel’nikova O, Anoshin G, Vladykin N and Saprykin A 2001 A Temperature gradient and structure of the lithospheric block beneath the southeastern margin of the Siberian craton: Disintegrated xenolith evidence from kimberlitic pipes of the Aldan shield; Dokl. Earth Sci. 378 495–499.

    Google Scholar 

  • Ashchepkov I V, André L, Downes H and Belyatsky B A 2011 Pyroxenites and megacrysts from Vitim picrite-basalts (Russia): Polybaric fractionation of rising melts in the mantle?; J. Asian Earth Sci. 42 14–37, https://doi.org/10.1016/j.jseaes.2011.03.004.

    Article  Google Scholar 

  • Ashchepkov I V 2011 Program of the mantle thermometers and barometers: Usage for reconstructions and calibration of PT methods; Vestnik Otdelenia Nauk o Zemle RAN 3 NZ6008, https://doi.org/10.2205/2011NZ000138.

    Article  Google Scholar 

  • Ashchepkov I V, Logvinova A M, Reimers L F, Ntaflos T, Spetsius Z V, Vladykin N V, Downes H, Yudin D S, Travin A V, Makovchuk I V, Palesskiy V S and Khmel’nikova O S 2015 The Sytykanskaya kimberlite pipe: Evidence from deep-seated xenoliths and xenocrysts for the evolution of the mantle beneath Alakit, Yakutia, Russia; Geosci. Front. 6 687–714, https://doi.org/10.1016/j.gsf.2014.08.005.

    Article  Google Scholar 

  • Ashchepkov I V, Ntaflos T, Logvinova A M, Spetsius Z V, Downes H and Vladykin N V 2017a Monomineral universal clinopyroxene and garnet barometers for peridotitic, eclogitic and basaltic systems; Geosci. Front. 8 775–795.

    Article  Google Scholar 

  • Ashchepkov I V, Logvinova A M, Ntaflos T, Vladykin N V and Downes H 2017b Alakit and Daldyn kimberlite fields Siberia Russia: Two types of mantle sub-terranes beneath central Yakutia?; Geosci. Front. 8 671–692.

    Article  Google Scholar 

  • Ashchepkov I V, Ntaflos T, Spetsius Z V, Salikhov R F and Downes H 2017c Interaction between protokimberlite melts and mantle lithosphere: Evidence from mantle xenoliths from the Dalnyaya kimberlite pipe Yakutia (Russia); Geosci. Front. 8 693–710.

    Article  Google Scholar 

  • Ashchepkov I V, Pokhilenko N P, Vladykin N V, Logvinova A M, Kostrovitsky S I, Afanasiev V P, Pokhilenko L N, Kuligin S S, Malygina L V, Alymova N V, Khmelnikova O S, Palessky S V, Nikolaeva I V, Karpenko M A and Stagnitsky Y B 2010 Structure and evolution of the lithospheric mantle beneath Siberian craton thermobarometric study; Tectonophys. 485 17–41.

    Article  Google Scholar 

  • Ashchepkov I V, Vladykin N N, Ntaflos T, Kostrovitsky S I, Prokopiev S A, Downes H, Smelov A P, Agashev A M, Logvinova A M, Kuligin S S, Tychkov N S, Salikhov R F, Stegnitsky Yu B, Alymova N V, Vavilov M A, Minin V A, Babushkina S A, Ovchinnikov Yu I, Karpenko M A, Tolstov A V and Shmarov G P 2014 Layering of the lithospheric mantle beneath the Siberian Craton: Modeling using thermobarometry of mantle xenolith and xenocrysts; Tectonophys. 634 55–75, https://doi.org/10.1016/j.tecto.2014.07.017.

    Article  Google Scholar 

  • Ashchepkov I V, Vladykin N V, Ntaflos T, Downes H, Mitchell R, Smelov A P, Alymova N V, Kostrovitsky S I, Rotman A Ya, Smarov G P, Makovchuk I V, Stegnitsky Yu B, Nigmatulina E N and Khmelnikova O S 2013 Regularities and mechanism of formation of the mantle lithosphere structure beneath the Siberian Craton in comparison with other cratons; Gondwana Res. 23 4–24, https://doi.org/10.1016/j.gr.2012.03.009.

    Article  Google Scholar 

  • Ashchepkov I V, Vladykin N V, Medvedev N S, Nikolenko E I, Yudin D S and Downes H 2021a Reconstructions of lithospheric mantle beneath Aldan shield based on deep-seated xenocrysts from lamprophyres of Chompolo field, Russia; J. Earth Syst. Sci. 130(4) 1–27, https://doi.org/10.1007/s12040-021-01694-z.

    Article  Google Scholar 

  • Ashchepkov I, Medvedev N, Ivanov A, Vladykin N, Ntaflos T, Downes H, Saprykin A, Tolstov A, Vavilov M and Shmarov G 2021b Deep mantle roots of the Zarnitsa kimberlite pipe, Siberian craton, Russia: Evidence for multistage polybaric interaction with mantle melts; J. Asian Earth Sci. 213 104756, https://doi.org/10.1016/j.jseaes.2021.104756.

    Article  Google Scholar 

  • Avdontsev S N and Malich K N 2019 Geodynamic model of the formation of Kondersky complex massifs; Russian Geol. Geophys. 30 27–32.

    Google Scholar 

  • Baruah A, Gupta A K, Mandal N and Singh R N 2013 Rapid ascent conditions of diamond-bearing kimberlitic magmas: Findings from high pressure–temperature experiments and finite element modeling; Tectonophys. 594 13–26, https://doi.org/10.1016/j.tecto.2013.03.006.

    Article  Google Scholar 

  • Bergman S C 1987 Lamproites and other potassium-rich igneous rocks, a review of their occurrence, mineralogy and geochemistry; In: Alkaline Igneous Rocks (eds) Fitton J G and Upton B G J; Geol. Soc. London, Spec. Publ. 30(1) 103–190, https://doi.org/10.1144/GSL.SP.1987.030.01.08.

  • Birkett T C 2008 First row transition elements, Y and Gain kimberlite and lamproites: Application to diamond prospectivity and petrogenesis; Canadian Mineral. 46(5) 1269–1282.

    Article  Google Scholar 

  • Brey G P and Kohler T 1990 Geothermobarometry in four-phase lherzolites. II. New thermobarometers, and practical assessment of existing thermobarometers; J. Petrol. 31 1353–1378, https://doi.org/10.1093/petrology/31.6.1353.

    Article  Google Scholar 

  • Bogatikov O A, Kononova V A, Nosova A A and Kondrashov I A 2007 Kimberlites and lamproites of the East European Platform: Petrology and geochemistry; Petrology 15 315–334, https://doi.org/10.1134/S0869591107040017.

    Article  Google Scholar 

  • Bogatikov O A, Kononova V A, Pervov V A and Zhuravlev D Z 1994 Petrogenesis of Mesozoic Potassic Magmatism of the Central Aldan: A Sr–Nd Isotopic and Geodynamic Model; Int. Geol. Rev. 36(7) 629–644, https://doi.org/10.1080/00206819409465479.

    Article  Google Scholar 

  • Chaika I F and Izokh A E 2018 Dunites of the Inagli massif Central Aldan cumulates of lamproitic magma; Russian Geol. Geophys. 59 1450–1460.

    Article  Google Scholar 

  • Chalapathi Rao N V 2005 A petrological and geochemical reappraisal of the Mesoproterozoic diamondiferous Majhgawan pipe of central India: Evidence for transitional kimberlite–orangeite (group II kimberlite)–lamproite rock type; Mineral. Petrol. 84 69–106.

    Article  Google Scholar 

  • Chalapathi Rao N C, Gibson S, Pyle D and Dickin A 2004 Petrogenesis of Proterozoic lamproites and kimberlites from the Cuddapah Basin and Dharwar craton southern India; J. Petrol. 45 907–948.

    Article  Google Scholar 

  • Chalapathi Rao N V, Kamde G, Kale H S and Dongre A 2010 Petrogenesis of the Mesoproterozoic Lamproites from the Krishna Valley Eastern Dharwar Craton Southern India; Precamb. Res. 177 103–130.

    Article  Google Scholar 

  • Chalapathi Rao N V, Creaser R A, Lehmann R A and Panwar B K 2013 Re–Os isotope study of Indian kimberlites and lamproites: Implications for mantle source regions and cratonic evolution; Chem. Geol. 353 36–47.

    Article  Google Scholar 

  • Chalapathi Rao N V, Dongre A, Wuc F-Y and Lehmann B 2016 A Late Cretaceous (ca. 90 Ma) kimberlite event in southern India: Implication for sub-continental lithospheric mantle evolution and diamond exploration; Gondwana Res. 35 378–389, https://doi.org/10.1016/j.gr.2015.06.006.

    Article  Google Scholar 

  • Chen B, Long X, Wild S A, Yuan C, Wang Q, Xia X and Zhang X 2017 Delamination of lithospheric mantle evidenced by Cenozoic potassic rocks in Yunnan, SW China: A contribution to uplift of the Eastern Tibetan Plateau; Lithos 284–285 709–729, https://doi.org/10.1016/j.lithos.2017.05.019.

    Article  Google Scholar 

  • Conticelli S, Guarnieria S, Farinelli S, Mattei M, Avanzinelli R, Bianchini G, Boari E, Tommasini S, Tiepolo M, Prelević M and Venturel G 2009 Trace elements and Sr–Nd–Pb isotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the Western Mediterranean Region: Genesis of ultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting; Lithos 107 68–92, https://doi.org/10.1016/j.lithos.2008.07.016.

    Article  Google Scholar 

  • Davies G R, Stolz A J, Mahotkin G M, Nowell I L and Pearson D G 2006 Trace element and Sr–Pb–Nd–Hf isotope evidence for ancient fluid-dominated enrichment of the source of Aldan shield lamproites; J. Petrol. 47 1119–1146.

    Article  Google Scholar 

  • DePaolo B J 1988 Neodymium isotope geochemistry. An Introduction; Springer-Verlag, New York, 190p.

  • Dare S A S, Pearce J A, McDonald I and Styles M T 2009 Tectonic discrimination of peridotites using fO2–Cr# and Ga–Ti–FeIII systematics in chrome–spinel; Chem. Geol. 261 199–216, https://doi.org/10.1016/j.chemgeo.2008.08.002.

    Article  Google Scholar 

  • Downes P J, Griffin B J and Griffin W L 2007 Mineral chemistry and zircon geochronology of xenocrysts and altered mantle and crustal xenoliths from the Aries micaceous kimberlite: Constraints on the composition and age of the central Kimberley Craton, Western Australia; Lithos 93 175–198, https://doi.org/10.1016/j.lithos.2006.06.005.

    Article  Google Scholar 

  • Edgar A D and Mitchell R H 1997 Ultra high pressure–temperature melting experiments on a SiO2-rich lamproite from Smoky Butte, Montana: Derivation of siliceous lamproite magmas from enriched sources deep in the continental mantle; J. Petrol. 38 457–477, https://doi.org/10.1093/petroj/38.4.457.

    Article  Google Scholar 

  • Evensen N M, Hamilton P J and Onions R K 1979 Rare-earth abundances in chondritic meteorites; Geochim. Cosmochim. Acta 42 1199–1212, https://doi.org/10.1016/0016-7037(78)90114-X.

    Article  Google Scholar 

  • Fan W, Jiang N, Hu J, Liu D, Zhao L and Li T 2021 A metasomatized 18O-rich veined lithospheric mantle source for ultrapotassic magmas; Lithos 382–383 105964, https://doi.org/10.1016/j.lithos.2020.105964.

    Article  Google Scholar 

  • Foley S F, Barth M G and Jenner G A 2000 Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas; Geochim. Cosmochim. Acta 64 933–938, https://doi.org/10.1016/S0016-7037(99)00355-5.

    Article  Google Scholar 

  • Foley S F, Venturelli G, Green D H and Toscani L 1987 The ultrapotassic rocks: Characteristics classification and constraints for petrogenetic models; Earth Sci. Rev. 24 81–134.

    Article  Google Scholar 

  • Foley S F 1991 High pressure stability of the fluor- and hydroxyend members of pargasite and K-richterite; Geochim. Cosmochim. Acta 55 2689–2694, https://doi.org/10.1016/0016-7037(91)90386-J.

    Article  Google Scholar 

  • Foley S F, Musselwhite D S and van der Laan S R 1999 Melt compositions from ultramafic vein assemblages in the lithospheric mantle: A comparison of cratonic and non-cratonic settings; In: Proceedings of the 7th International Kimberlite Conference (eds) Gurney J J, Gurney J L, Pascoe M D and Richardson S H, Red Roof Design, Cape Town, pp. 238–246.

  • Fraser K J, Hawkesworth C J, Erlank A J, Mitchell R H and Scott-Smith B H 1985 Sr, Nd and Pb isotope and minor element geochemistry of lamproites and kimberlites; Earth Planet. Sci. Lett. 76 57–70, https://doi.org/10.1016/0012-821X(85)90148-7.

    Article  Google Scholar 

  • Gao J, John T, Klemd R and Xiong X M 2007 Mobilization of Ti–Nb–Ta during subduction: Evidence from rutile-bearing dehydration segregations and veins hosted in eclogite, Tianshan, NW China; Geochim. Cosmochim. Acta 71 4974–4996.

    Article  Google Scholar 

  • Gao M, Xu M, Zhang J and Foley S F 2019 Experimental interaction of granitic melt and peridotite at 1.5 GPa: Implications for the origin of post-collisional K-rich magmatism in continental subduction zones; Lithos 350–351 105241.

    Article  Google Scholar 

  • GEOROC – Geochemical Database on magmatic Rocks, http://georoc.mpch-mainz.gwdg.de/georoc/.

  • Gorring M, Singer B, Gowers J and Kay S M 2003 Plio-Pleistocene basalts from the Meseta del Lago Buenos Aires, Argentina: Evidence for asthenosphere–lithosphere interactions during slab window magmatism; Chem. Geol. 193 215–235, https://doi.org/10.1016/S0009-2541(02)00249-8.

    Article  Google Scholar 

  • Giuliani A, Phillips D, Kamenetsky V S and Goemann K 2016 Constraints on kimberlite ascent mechanisms revealed by phlogopite compositions in kimberlites and mantle xenoliths; Lithos 240–243 189–220.

    Article  Google Scholar 

  • Green T H, Blundy J D, Adam J and Yaxley G M 2000 SIMS determination of trace element partition coefficients between garnet clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080–1200°C; Lithos 53 165–187.

    Article  Google Scholar 

  • Hart S R and Dunn T 1993 Experimental cpx/melt partitioning of 24 trace elements; Contrib. Mineral. Petrol. 113 1–8, https://doi.org/10.1007/BF00320827.

    Article  Google Scholar 

  • Hofmann A W 1988 Chemical differentiation of the Earth: The relationship between mantle, continental crust and oceanic crust; Earth Planet. Sci. Lett. 90 297–314, https://doi.org/10.1016/0012-821X(88)90132-X.

    Article  Google Scholar 

  • Ivanov A V, Demonterova E I, Savatenkov V M, Perepelov A B, Ryabov V V and Shevko A Y 2018 Late Triassic Carnian lamproites from Noril’sk polar Siberia: Evidence for melting of the recycled Archean crust and the question of lamproite source for some placer diamond deposits of the Siberian Craton; Lithos 296–299 67–78.

    Article  Google Scholar 

  • Jahn B-M, Gruau G, Capdevila R, Cornichet J, Nemchin A A, Pidgeon A and Rudnik V A 1998 Archean crustal evolution of the Aldan Shield Siberia: Geochemical and isotopic constraints; Precamb. Res. 91 333–363.

    Article  Google Scholar 

  • Jaques A L, Lewis J D and Smith C B 1986 Kimberlites and lamproites of Western Australia; Geol. Surv. Western Australia Bull. 132 268.

    Google Scholar 

  • Jaques A, Lewis J, Smith C, Gregory G, Ferguson J, Chappell B and McCulloch M 1984 The diamond-bearing ultrapotassic (lamproitic) rocks of the West Kimberley region, Western Australia; In: Developments in Petrology, Elsevier, Amsterdam, The Netherlands, 11 225–254.

    Article  Google Scholar 

  • Johnson T M 1998 Experimental determination of partition coefficients for rare earth and high- field-strength elements between clinopyroxene, garnet and basaltic melt at high pressures; Contrib. Mineral. Petrol. 133 60–68, https://doi.org/10.1007/s004100050437.

    Article  Google Scholar 

  • Khomich V G, Boriskina N G and Santosh M 2015 Geodynamics of Late Mesozoic PGE Au and U Mineralization in the Aldan Shield North Asian Craton; Ore Geol. Rev. 1 30–42.

    Article  Google Scholar 

  • Kochetkov A Ya 2006 Mineral potential of alkaline massifs of the Aldan Shield The Ryabinovoe copper–gold–porphyry deposit; Tikhookeanskaya Geologiya 2 62–73.

    Google Scholar 

  • Klein M, Stosch H G, Seck H A and Shimizu N 2000 Experimental partitioning of high field strength and rare earth elements between clinopyroxene and garnet in andesitic to tonalitic systems; Geochim. Cosmochim. Acta 64 99–115, https://doi.org/10.1016/S0016-7037(99)00178-7.

    Article  Google Scholar 

  • Konzett J, Armstrong R A, Sweeney R J and Compston W 1998 The timing of MARID metasomatism in the Kaapvaal mantle: an ion probe study of zircons from MARID xenoliths; Earth Planet. Sci. Lett. 160 133–145, https://doi.org/10.1016/S0012-821X(98)00073-9.

    Article  Google Scholar 

  • Kotov A B, Sal’nikova E B, Glebovitsky V A, Zagornaya N Yu, Kovach V P, Larin A M, Velikoslavinskii S D and Zagornaya N Yu 2006 Sm–Nd isotopic provinces of the Aldan Shield; Dokl. Earth Sci. 410(1) 1066–1069, https://doi.org/10.1134/S1028334X06070142.

    Article  Google Scholar 

  • Kovalenker V A, Myznikov I K, Kochetkov A Ya and Naumov V B 1996 PGE-bearing goldsulfide mineralization in the Ryabiovyi alkaline massif, Central Aldan; Russia; Geol. Ore Depos. 38 307–317.

    Google Scholar 

  • Kovalenko V I, Yarmolyuk V V, Kovach V P, Kotov A B, Kozakov I K, Salnikov E B and Larin A M 2004 Isotope provinces mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: Geological and isotopic evidence; J. Asian Earth Sci. 23 605–627, https://doi.org/10.1016/S1367-9120(03)00130-5.

    Article  Google Scholar 

  • Krmíček L, Cempírek J, Havlín A, Přichystal A, Houzar S, Krmíčková M and Gadas P 2011 Mineralogy and petrogenesis of a Ba–Ti–Zr-rich peralkaline dyke from Šebkovice (Czech Republic): Recognition of the most lamproitic Variscan intrusion; Lithos 121 74–86, https://doi.org/10.1016/J.LITHOS.2010.10.005.

    Article  Google Scholar 

  • Lavrent’ev Y G, Korolyuk V, Usova L and Nigmatulina E 2015 Electron probe microanalysis of rock-forming minerals with a JXA-8100 electron probe microanalyzer; Russian Geol. Geophys. 56 1428–1436, https://doi.org/10.1016/S1367-9120(03)00130-5.

    Article  Google Scholar 

  • Laughlin A W, Aldrich M J, Shaffiquellah M and Husler J 1999 Tectonic implications of the age, composition and orientation of lamprophyre dikes, Navajo volcanic field, Arizona; Earth Planet. Sci. Lett. 76 361–374, https://doi.org/10.1016/0012-821X(86)90087-7.

    Article  Google Scholar 

  • Luguet A, Jaques A L, Pearson D G, Smith C B, Bulanovae G P, Roffey S L, Rayner M J and Lorand J-P 2007 An integrated petrological, geochemical and Re–Os isotope study of peridotite xenoliths from the Argyle lamproite. Western Australia and implications for cratonic diamond occurrences; Lithos 112 1096–1108, https://doi.org/10.1016/J.LITHOS.2009.05.022.

    Article  Google Scholar 

  • Lustrino M and Wilson M 2007 The circum-mediterranean anorogenic Cenozoic igneous province; Earth Sci. Rev. 81 1–65.

    Article  Google Scholar 

  • Leake B E, Woolley A R, Arps C E S and Birch W D 1997 Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international association commission on new minerals and mineral names; Am. Mineral. 82 1019–1037.

    Google Scholar 

  • Locock L J 2014 An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations; Comput. Geosci. 62 1–11, https://doi.org/10.1016/j.cageo.2013.09.011.

    Article  Google Scholar 

  • Liu L, Zhang C, Cheng Z, Santosh M, Liu B and Li H 2021 Ultramafic xenoliths from aillikites in the Tarim large igneous province: Implications for Alaskan-type affinity and role of subduction; Lithos 380–381 105902, https://doi.org/10.1016/jlithos2020105902.

    Article  Google Scholar 

  • Mahotkin I L, Arakelyan M M and Vladykin N V 1989 Age of the Aldan lamproite province; Dokl. Akad. Nauk SSSR 306 703–707.

    Google Scholar 

  • Manning C E 2006 The chemistry of subduction-zone fluids; Earth Planet. Sci. Lett. 223 1–16, https://doi.org/10.1016/j.gca.2006.06.784.

    Article  Google Scholar 

  • Maruyama S, Hasegawa A, Santosh M, Kogiso T, Omori S, Nakamura H, Kawai K and Zhao D 2009 The dynamics of big mantle wedge, magma factory, and metamorphic–metasomatic factory in subduction zones; Gondwana Res. 2004(16) 414–430, https://doi.org/10.1016/jepsl200404030.

    Article  Google Scholar 

  • Maruyama S, Santosh M and Zhao D 2007 Superplume, supercontinent, and post-perovskite: Mantle dynamics and anti-plate tectonics on the Core–Mantle Boundary; Gondwana Res. 11 7–37, https://doi.org/10.1016/jgr200606003.

    Article  Google Scholar 

  • McCulloch M T, Jaques A L, Nelson D R and Lewis J D 1983 Nd and Sr isotopes in kimberlites and lamproites from Western Australia: An enriched mantle origin; Nature 302 400–403.

    Article  Google Scholar 

  • McDonough W F and Sun S-S 1995 The composition of the Earth; Chem. Geol. 120 223–253, https://doi.org/10.1016/0009-2541(94)00140-4.

    Article  Google Scholar 

  • McGregor I D 1974 The system MgO–SiO2–Al2O3: Solubility of Al2O3 in enstatite for spinel and garnet peridotite compositions; Am. Miner. 59 110–119, http://www.minsocam.org/ammin/AM59/AM59_110pdf.

  • Mitchell R H, Smith C B and Vladykin N V 1994 Isotopic composition of strontium and neodymium in potassic rocks of the Little Murun complex Aldan Shield Siberia; Lithos 32 243–248, https://doi.org/10.1016/0024-4937(94)90042-6.

    Article  Google Scholar 

  • Mitchell R H and Bergman S C 1991 Petrology of Lamproites, Plenum, New York, 447p, https://doi.org/10.1016/0024-4937(94)90042-6.

  • Mitchell R H 1986 Kimberlites: Mineralogy, geochemistry and petrology, Plenum Press, New York and London, 436p.

  • Mitchell R H 2021 Alkaline Rocks: Leucitites, Lamproites, and Kimberlites; In: Encyclopedia of Geology; 2nd edn, Elsevier, pp. 215–239.

  • Mitchell R H 1995 Melting experiments on a sanidine phlogopite lamproite at 4–7 GPa and their bearing on the sources of lamproitic magmas; J. Petrol. 36 1455–1474, https://doi.org/10.1007/s007100200000.

    Article  Google Scholar 

  • Miyazaki T and Shuto K 1998 Sr and Nd isotope ratios of twelve GSJ rock reference samples; Geochem. J. 32 345–350.

    Article  Google Scholar 

  • Mues-Schumacher U, Keller J, Konova V and Suddaby P 1995 Petrology and age determinations of the ultramafic lamproitic rocks from the Yakokut complex, Aldan Shield, Eastern Siberia; Mineral. Mag. 59 409–428, https://doi.org/10.1180/minmag199505939604.

    Article  Google Scholar 

  • Murphy D, Collerson K D, Balz S and Kamber B S 2002 Lamproites from Gaussberg, Antarctica: Possible transition zone melts of archaean subducted sediments; J. Petrol. 43 981–1001, https://doi.org/10.1093/petrology/43.6.981.

    Article  Google Scholar 

  • Nelson D R 1992 Isotopic characteristics of potassic rocks – evidence for the involvement of subducted sediments in magma genesis; Lithos 28 403–420, https://doi.org/10.1016/0024-4937(92)90016-R.

    Article  Google Scholar 

  • Ngwenya N S and Tappe S 2021 Diamondiferous lamproites of the Luangwa Rift in Central Africa and links to remobilized cratonic lithosphere; Chem. Geol. 568 120019.

    Article  Google Scholar 

  • Nimis P and Taylor W 2000 Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer; Contrib. Mineral. Petrol. 139 541–554.

    Article  Google Scholar 

  • Nikolenko E I, Lobov K V, Agashev A M, Tychkov N S, Chervyakovskaya M V, Sharygin I S and Nikolenko A M 2020 40Ar/39Ar Geochronology and New Mineralogical and Geochemical Data from Lamprophyres of Chompolo Field (South Yakutia, Russia); Minerals 10 886, https://doi.org/10.3390/min10100886.

    Article  Google Scholar 

  • ON’eill H St C and Wall V J 1987 The olivine orthopyroxene-spinel oxygen geobarometer the nickel precipitation curve and the oxygen fugacity of the Earth’s upper mantle; J. Petrol. 8 1169–1191, https://doi.org/10.1093/petrology/2861169.

    Article  Google Scholar 

  • Pal’yanov N, Sokol A G, Borzdov M and Khokhryakov A F 2002 Fluid-bearing alkaline carbonate melts as the medium for the formation of diamonds in the Earth’s mantle: An experimental study; Lithos 60 145–159, https://doi.org/10.1016/S0024-4937(01)00079-2.

    Article  Google Scholar 

  • Panina L I, Nikolaeva A T and Rokosova E Yu 2011 Crystallization conditions of the alkaline-basic dike from the Yllymakh Massif Central Aldan: Evidence from melt inclusion data in minerals; Geochem. Int. 49 120–138.

    Article  Google Scholar 

  • Panina L I and Vladykin N V 1994 Lamproitic rocks of the Murun Massif and their genesis; Russian Geol. Geophys. 35 100–113.

    Google Scholar 

  • Panina L I 1993 Lamproite rocks of aldan and genetic criteria of lamproite melt; Russian Geol. Geophys. 6 82–89.

    Google Scholar 

  • Panina L I 1997 Low-titanium Aldan lamproites Siberia: Melt inclusions in minerals; Russian Geol. Geophys. 38 118–127.

    Google Scholar 

  • Perchuk L L, Aranovich L Y, Podlesskiy K K, Lavrant I V, Gerasimov V Y, Fedkin V V, Kitsul V I, Karsakov L P and Berdnikov N V 1985 Precambrian granulites of the Aldan Shield; Eastern Siberia J. Metamorph. Geol. 3 265–310, https://doi.org/10.1111/j1525-13141985tb00321x.

    Article  Google Scholar 

  • Pirajno F, Ernst R E, Borisenko A S, Fedoseev G and Naumov E A 2009 Intraplate magmatism in Central Asia and China and associated metallogeny; Ore Geol. Rev. 35 114–136, https://doi.org/10.1016/joregeorev200810003.

    Article  Google Scholar 

  • Popov N V and Smelov A P 1996 The Aldan Shield metamorphic assemblages; Russian Geol. Geophys. 37 148–161.

    Google Scholar 

  • Popov N V, Shaporina M N, Amuzinsky V A, Smelov A P and Zedgenizov A N 1999 Metallogeny of gold of Aldan province; Russian Geol. Geophys. 40 716–728.

    Google Scholar 

  • Prelević D, Stracke A, Foley S F, Romer R L and Conticelli S 2010 Hf isotope compositions of Mediterranean lamproites: Mixing of melts from asthenosphere and crustally contaminated mantle lithosphere; Lithos 119 297–312, https://doi.org/10.1016/jlithos201007007.

    Article  Google Scholar 

  • Prelevic D, Akal C, Foley S, Romer R, Stracke A and Van Den Bogaard P 2012 Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: The case of southwestern Anatolia; Turkey J. Petrol. 53 1019–1055, https://doi.org/10.1093/petrology/egs008.

    Article  Google Scholar 

  • Prokopyev I R, Doroshkevich A G, Ponomarchuk A V, Redina A A, Yegitova I V, Ponomarev J D, Sergeev S A, Kravchenko A A, Ivanov A I, Sokolov E P, Kardash E A and Minakov A V 2019 U–Pb SIMS and Ar–Ar geochronology, petrography, mineralogy and gold mineralization of the late Mesozoic Amga alkaline rocks Aldan shield; Russian Ore Geol. Rev. 109 520–534, https://doi.org/10.1093/petrology/egs008.

    Article  Google Scholar 

  • Rock N 1984 Nature and origin of calc-alkaline lamprophyres: Minettes, vogesites, kersantites and spessartites; Earth Environ. Sci. Trans. R. Soc. Edinburg 74 193–227.

    Article  Google Scholar 

  • Rogers N 1992 Potassic magmatism as a key to trace-element enrichment processes in the upper mantle; J. Volcanol. Geotherm. Res. 50 85–99, https://doi.org/10.1016/0377-0273(92)90038-F.

    Article  Google Scholar 

  • Rokosova E Yu, Panina L I, Vasil'ev Yu R and Lesnov F P 2016 Conditions of crystallization of olivine shonkinites in the Inagli massif Central Aldan; Russian Geol. Geophys. 57(9) 1298–1311.

    Article  Google Scholar 

  • Sahu N. Gupta T, Patel S, Khuntia D B K, Beher C, Pande D and Das K S 2013 Petrology of Lamproites from the Nuapada Lamproite Field, Bastar Craton, India; In: Proceedings of 10th International Kimberlite Conference (eds) Pearson D et al., Springer, New Delhi, https://doi.org/10.1007/978-81-322-1170-9_9.

  • Santosh M, Hari K R, He X-F, Han Y-S and Manu Prasanth M P 2018 Oldest lamproites from peninsular india track the onset of paleoproterozoic plume-induced rifting and the birth of large igneous province; Gondwana Res. 55 1–20.

    Article  Google Scholar 

  • Shatova N V, Skublov A E, Melnik S G, Shatov V V, Molchanov A V, Terehov A V and Sergeev S A 2017 Geochronology of alkaline magmatic rocks and metasomatites of the Ryabinovy stock South Yakutia based on zircon isotopic and geochemical U–Pb, REE investigations; Region Geol. 69 33–48.

    Google Scholar 

  • Simonov V A, Prikhodko V S and Kovyazin S V 2011 Genesis of platiniferous massifs in the southeastern Siberian Platform; Petrology 19(6) 549–567, https://doi.org/10.1134/S0869591111050043.

    Article  Google Scholar 

  • Smelov A P, Yan H, Timofeev V F, Prokopiev A V and Nokleberg W J 2010 Archean through Mesoproterozoic metallogenesis and tectonics of northeast Asia; In: Metallogenesis and Tectonics of Northeast Asia, Chapter 4. US Geological Survey: Reston, VA, USA.

  • Spandler C, Hammerli J and Yaxley G M 2017 An experimental study of trace element distribution during partial melting of mantle heterogeneities; Chem. Geol. 462 74–87, https://doi.org/10.1016/jchemgeo201705002.

    Article  Google Scholar 

  • Stalder R, Foley S, Brey G and Horn I 1998 Mineral-aqueous fluid partitioning of trace elements at 900–1200°C and 30–57 GPa: New experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism; Geochim. Cosmochim. Acta 62 1781–1801, https://doi.org/10.1016/S0016-7037(98)00101-X.

    Article  Google Scholar 

  • Sun S, Tappe S, Kostrovitsky S I, Liu C-Z, Skuzovatov S Yu and Wu F-Y 2018 Mantle sources of kimberlites through time: A U–Pb and Lu–Hf isotope study of zircon megacrysts from the Siberian diamond fields; Chem. Geol. 479 228–240, https://doi.org/10.1016/jchemgeo201801013.

    Article  Google Scholar 

  • Sweeney R J, Thompson A B and Ulmer P 1993 Phase relations of a natural MARID composition and implications for MARID genesis, lithospheric melting and mantle metasomatism; Contrib. Mineral. Petrol. 115 225–241, https://doi.org/10.1007/BF00321222.

    Article  Google Scholar 

  • Tappe S, Smart K A, Torsvik T H, Massuyeau M and de Wit M C J 2018 Geodynamics of kimberlites on a cooling earth: Clues to plate tectonic evolution and deep volatile cycles; Earth Planet. Sci. Lett. 484 1–14, https://doi.org/10.1016/jepsl201712013.

    Article  Google Scholar 

  • Tappe S, Stracke A, Acken D, Strauss H and Luguete A 2020 Origins of kimberlites and carbonatites during continental collision – Insights beyond decoupled Nd-Hf isotopes; Earth Sci. Rev. 208 103287, https://doi.org/10.1016/jearscirev2020103287.

    Article  Google Scholar 

  • Talukdar D, Pandey A, Chalapathi Rao N V, Kumar A, Pandit D, Belyatsky B and Lehmann B 2018 Petrology and geochemistry of the Mesoproterozoic Vattikod lamproites, Eastern Dharwar Craton, southern India: Evidence for multiple enrichment of sub-continental lithospheric mantle and links with amalgamation and break-up of the Columbia supercontinent; Contrib. Mineral. Petrol. 173 67, https://doi.org/10.1007/s00410-018-1493-y.

    Article  Google Scholar 

  • Timmerman S, Honda M, Zhang X, Jaques A L, Bulanov G, Smith C B and Burnham A D 2019 Contrasting noble gas compositions of peridotitic and eclogitic monocrystalline diamonds from the Argyle lamproite, Western Australia; Lithos 344–345 193–206, https://doi.org/10.1016/j.lithos.2019.06.027.

    Article  Google Scholar 

  • Tischendorf G, Rieder M, Förster H J, Gottesmann B and Guidotti C V 2004 A new graphical presentation and subdivision of potassium micas; Mineral. Mag. 68 649–667, https://doi.org/10.1180/0026461046840210.

    Article  Google Scholar 

  • Tommasini S, Avanzinelli R and Conticelli S 2011 The Th/La and Sm/La conundrum of the Tethyan realm lamproites; Earth Planet. Sci. Lett. 301 469–478.

    Article  Google Scholar 

  • Vavilov M A, Bazarova Y T, Podgornykh N M, Krivoputskaya L M and Kuznetsova I K 1986 Characteristics and formation conditions of potassic alkaline rocks of the Loman Massif; Russian Geol. Geophys. 27 40–46.

    Google Scholar 

  • Veter M, Foley S F, Mertz-Kraus R and Groschopf N 2017 Trace elements in olivine of ultramafic lamprophyres controlled by phlogopite-rich mineral assemblages in the mantle source; Lithos 292–293 81–95, https://doi.org/10.1016/jlithos201708020.

    Article  Google Scholar 

  • Vladykin N 1985 First finding of lamproites in the USSR; Doklady Earth Sci. 718–722.

  • Vladykin N V 1996 Bilibinsky massif-stratified highly differentiated complex K-ultrabasic-alkaline rocks; Dokl. Earth Sci. 349(6) 972–975.

    Google Scholar 

  • Vladykin N V 1997 Geochemistry and genesis of lamproites of the Aldan Shield; Russian Geol. Geophys. 38 128–141.

    Google Scholar 

  • Vladykin N V 2000 Malyi Murun volcano-plutonic complex: An example of differentiated mantle magmas of lamproitic type; Geochem. Int. 38 573–583.

    Google Scholar 

  • Vladykin N V 2009 Potassium alkaline lamproite-carbonatite complexes: petrology genesis and ore reserves; Russian Geol. Geophys. 50(12) 1119–1128, https://doi.org/10.1016/jrgg2009110.10.

    Article  Google Scholar 

  • Vladykin N V 2016 Genesis and crystallization of ultramafic alkaline carbonatite magmas of Siberia: Ore potential mantle sources and relationship with plume activity; Russian Geol. Geophys. 57 698–712.

    Article  Google Scholar 

  • Vladykin N, Ashchepkov I, Sotnikova I and Mevedev N 2021 Lamprophyres of Kayla pipe and their mantle xenocrysts, SE Yakutia, EGU General Assembly 2021, Abstract 3726, https://doi.org/10.5194/egusphere-egu21-3746

  • Wang Y-Y and Xiao Y 2018 Fluid-controlled element transport and mineralization in subduction; Solid Earth Sci. 3 87–104, https://doi.org/10.1016/jsesci201806003.

    Article  Google Scholar 

  • Wooley A R, Bergman S C, Edgar A D, Le Bas M J, Mitchell R H, Rock N M S and Scott Smith B H 1996 Classification of lamprophyres, lamproites, kimberlites and the calsilitic, melilitic, and leucitic rocks; Can. Mineral. 34 175–186.

    Google Scholar 

  • Wyman D and Kerrich R 1993 Archean shoshonitic lamprophyres of the Abitibi Subprovince, Canada: Petrogenesis, age, and tectonic setting; J. Petrol. 34 1067–1109, https://doi.org/10.1093/petrology/3461067.

    Article  Google Scholar 

  • Yellappa T, Chalapathi Rao N V and Chetty T R K 2010 Occurrence of lamproitic dykes at the northern Margin of the Indravati Basin, Bastar Craton, Central India; J. Geol. Soc. India 75 632–643, https://doi.org/10.1007/s12594-010-0056-2.

    Article  Google Scholar 

  • Zhao Z, Mo X, Dilek Y, Niu Y, DePaolo D, Robinson P, Zhu D, Sun X, Dong G, Zhou S, Luo Z and Hou Z 2009 Geochemical and Sr–Nd–Pb–O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet; Lithos 113 190–212, https://doi.org/10.1016/jlithos200902004.

    Article  Google Scholar 

  • Zheng Y-F, Xu Z, Chen L, Dai L-Q and Zhao Z-F 2020 Chemical geodynamics of mafic magmatism above subduction zones; J. Asian Earth Sci. 194 104185, https://doi.org/10.1016/jjseaes2019104185.

    Article  Google Scholar 

  • Zheng Y-F, Xia O-X, Chen R-X and Gao X-Y 2011 Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision; Earth Sci. Rev. 107 342–374, https://doi.org/10.1016/jearscirev201104004.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Ministry of Science and Higher Education of the Russian Federation N121031700315-2. RBRF grants 19-05-00788a, 18-05-00073a. Government tasks for Institute of Geochemistry SB RAS and Institute of Geology and Mineralogy SB RAS and the governmental assignment in terms of Project IX. 129.1.4.

Author information

Authors and Affiliations

Authors

Contributions

Vladykin Nikolai V sampled Kyala lamproite, prepared KIM concentrates and fractions for analyses, studied and described geology and samples and made their petrography and bulk rock major element and trace element analyses and described isotopic data. Ashchepkov Igor V performed the microprobe analyses, interpreted the data, wrote the manuscript; Sotnikova Irina V made petrographic and geological descriptions and did the field work. Medvedev Nkolai S made LA-ICP-MS analyses.

Corresponding author

Correspondence to I V Ashchepkov.

Additional information

Communicated by N V Chalapathi Rao

Supplementary material pertaining to this article is available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 236 kb)

Supplementary file2 (PPTX 4989 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vladykin, N.V., Ashchepkov, I.V., Sotnikova, I.A. et al. Lamproites of Kayla pipe and their mantle xenocrysts, SE Aldan shield, Russia: Geochemistry and petrology. J Earth Syst Sci 131, 81 (2022). https://doi.org/10.1007/s12040-022-01814-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-022-01814-3

Keywords

Navigation