Skip to main content
Log in

Petrology and geochemistry of the Mesoproterozoic Vattikod lamproites, Eastern Dharwar Craton, southern India: evidence for multiple enrichment of sub-continental lithospheric mantle and links with amalgamation and break-up of the Columbia supercontinent

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Numerous lamproite dykes are hosted by the Eastern Dharwar Craton, southern India, particularly towards the northwestern margin of the Cuddapah Basin. We present here a comprehensive mineralogical and geochemical (including Sr and Nd isotopic) study on the lamproites from the Vattikod Field, exposed in the vicinity of the well-studied Ramadugu lamproite field. The Vattikod lamproites trend WNW–ESE to NW–SE and reveal effects of low-temperature post-magmatic alteration. The studied lamproites show porphyritic texture with carbonated and serpentinized olivine, diopside, fluorine-rich phlogopite, amphibole, apatite, chromite, allanite, and calcite. The trace-element geochemistry (elevated Sr and HFSE) reveals their mixed affinity to orogenic as well as anorogenic lamproites. Higher fluorine content of the hydrous phases coupled with higher whole-rock K2O highlights the role of metasomatic phlogopite and apatite in the mantle source regions. Trace-element ratios such as Zr/Hf and Ti/Eu reveal carbonate metasomatism of mantle previously enriched by ancient subduction processes. The initial 87Sr/86Sr-isotopic ratios (calculated for an assumed emplacement age of 1350 Ma) vary from 0.7037 to 0.7087 and ɛNd range from − 10.6 to − 9.3, consistent with data on global lamproites and ultrapotassic rocks. We attribute the mixed orogenic–anorogenic character for the lamproites under study to multi-stage metasomatism. We relate the (1) earlier subduction-related enrichment to the Paleoproterozoic amalgamation of the Columbia supercontinent and the (2) second episode of carbonate metasomatism to the Mesoproterozoic rift-related asthenospheric upwelling associated with the Columbia breakup. This study highlights the association of lamproites with supercontinent amalgamation and fragmentation in the Earth history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adam J, Green TH (1994) The effects of pressure and temperature on the partitioning of Ti, Sr and REE between amphibole, clinopyroxene and basanitic melts. Chem Geol 117:219–233

    Google Scholar 

  • Agrawal PK, Pandey OP, Negi JG (1992) Madagascar: a continental fragment of the paleo-super Dharwar craton of India. Geology 20:543–546

    Google Scholar 

  • Ahmed S, Sufija MV, Ravi S (2016) Final report on search for kimberlite/lamproite in Kollapur–Srirangapur blocks in parts of Mahabubnagar district, Telangana and Kurnool district, Andhra Pradesh (G-4 stage). Unpublished progress report of the Geological Survey of India for field seasons 2014–15 and 2015–16

  • Andronikov AV, Foley SF (2001) Trace element and Nd–Sr isotopic composition of ultramafic lamprophyres from the East Antarctic Beaver Lake area. Chem Geol 175:291–305

    Google Scholar 

  • Avanzinelli R, Elliott T, Tommasini S, Conticelli S (2008) Constraints on the genesis of potassium-rich Italian volcanic rocks from U/Th disequilibrium. J Pet 49(2):195–223

    Google Scholar 

  • Avanzinelli R, Lustrino M, Mattei M, Melluso L, Conticelli S (2009) Potassic and ultrapotassic magmatism in the circum-Tyrrhenian region: significance of carbonated pelitic vs. pelitic sediment recycling at destructive plate margins. Lithos 113:213–227

    Google Scholar 

  • Bergman SC (1987) Lamproites and other potassium-rich igneous rocks: a review of their occurrence, mineralogy and geochemistry, vol 30. In: Fitton JG, Upton BGJ (eds) Alkaline igneous rocks. Geol Soc Lond Spec Publ, pp 103–190

  • Bizzaro M, Stevenson RK (2003) Major element composition of the lithospheric mantle under the North Atlantic craton: evidence from peridotite xenoliths of the Sarfartoq area, southwestern Greenland. Contrib Miner Pet 146:223–240

    Google Scholar 

  • Blichert-Toft J, Albarède F (1997) The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett 148(1–2):243–258

    Google Scholar 

  • Buzzi L, Gaggero L, Grozdanov L, Yanev S, Slejko F (2010) High-Mg potassic rocks in the Balkan segment of the Variscan belt (Bulgaria): implications for the genesis of orogenic lamproite magmas. Geol Mag 147(3):434–450

    Google Scholar 

  • Campbell IH (2002) Implications of Nb/U, Th/U and Sm/Nd in plume magmas for the relationship between continental and oceanic crust formation and the development of the depleted mantle. Geochim Cosmochim Acta 66(9):1651–1661

    Google Scholar 

  • Carmichael ISE (1967) The mineralogy and petrology of the volcanic rocks from the Leucite Hills, Wyoming. Contrib Miner Pet 15:24–66

    Google Scholar 

  • Chadwick B, Vasudev VN, Ahmed N (1996) The Sandur schist belt and its adjacent plutonic rocks implications for Late Archaean crustal evolution in Karnataka. J Geol Soc India 47:37–57

    Google Scholar 

  • Chadwick B, Vasudev VN, Hegde GV (2000) The Dharwar craton, southern India, interpreted as the result of Late Archaean oblique convergence. Precambrian Res 99:91–111

    Google Scholar 

  • Chakhmouradian AR, Reguir EP, Mitchell RH (2002) Strontium apatite: new occurrences, and the extent of Sr-for-Ca substitution in apatite-group minerals. Can Miner 40:121–136

    Google Scholar 

  • Chakrabarti R, Basu AR, Paul DK (2007) Nd–Hf–Sr–Pb isotopes and trace element geochemistry of Proterozoic lamproites from southern India: subducted komatiite in the source. Chem Geol 236:291–302

    Google Scholar 

  • Chakrabarti R, Basu AR, Santo AP, Tedesco D, Vaselli O (2009) Isotopic and geochemical evidence for a heterogeneous mantle plume origin of the Virunga volcanic, western rift, east Africa rift system. Chem Geol 259:273–289

    Google Scholar 

  • Chalapathi Rao NV, Miller JA, Pyle DM, Madhavan V (1996) New Proterozoic K-Ar ages for some kimberlites and lamproites from the Cuddapah Basin and Dharwar Craton, southern India: evidence for non-contemporaneous emplacement. Precambrian Res 79:363–369

    Google Scholar 

  • Chalapathi Rao NV, Gibson SA, Pyle DM, Miller JA, Madhavan V (1999) Precise 40Ar/39Ar age determinations of the Kotakonda Kimberlite and Chelima lamproite, India: implication to the timing of mafic dyke swarm emplacement in the eastern Dharwar Craton. J Geol Soc India 53(4):425–432

    Google Scholar 

  • Chalapathi Rao NV, Gibson SA, Pyle DM, Dickin AP (2004) Petrogenesis of Proterozoic lamproites and kimberlites from the Cuddapah basin and Dharwar craton, southern India. J Pet 45(5):907–948

    Google Scholar 

  • Chalapathi Rao NV, Kamde G, Kale HS, Dongre A (2010) Petrogenesis of the Mesoproterozoic lamproites from the Krishna valley, eastern Dharwar craton, southern India. Precambrian Res 177:103–130

    Google Scholar 

  • Chalapathi Rao NV, Wu F-Y, Mitchell RH, Li Q-L, Lehmann B (2013) Mesoproterozoic U–Pb ages, trace element and Sr–Nd isotopic composition of perovskite from kimberlites of the eastern Dharwar craton, southern India: distinct mantle sources and a widespread 1.1 Ga tectonomagmatic event. Chem Geol 353:48–64

    Google Scholar 

  • Chalapathi Rao NV, Kumar A, Sahoo S, Dongre AN, Talukdar D (2014) Petrology and petrogenesis of Mesoproterozoic lamproites from the Ramadugu field, NW margin of the Cuddapah basin, eastern Dharwar craton, southern India. Lithos 196–197:150–168

    Google Scholar 

  • Chalapathi Rao NV, Kumar A, Sahoo S, Nanda P, Chahong N, Lehmann B, Rao KVS (2016a) Petrogenesis of Mesoproterozoic lamproite dykes from the Garledinne (Banganapalle) cluster, south-western Cuddapah Basin, southern India. Miner Pet 110:247–268

    Google Scholar 

  • Chalapathi Rao NV, Burgess R, Nanda P, Choudhary AK, Sahoo S, Lehmann B, Chahong N (2016b) Petrology, 40Ar/39Ar age, Sr–Nd isotope systematics, and geodynamic significance of an ultrapotassic (lamproitic) dyke with affinities to kamafugites from the easternmost margin of the Bastar craton, India. Miner Pet 110:269–293

    Google Scholar 

  • Chalapathi Rao NV, Dongre A, Wu F-Y, Lehmann B (2016c) A Late Cretaceous (ca. 90 Ma) kimberlite event in southern India: implication for sub-continental lithospheric mantle evolution and diamond exploration. Gondwana Res 35:378–389

    Google Scholar 

  • Chalapathi Rao NV, Lehmann B, Belyatsky B, Warnsloh JM (2017) The Late Cretaceous diamondiferous pyroclastic kimberlites from the Fort à la Corne (FALC) field, Saskatchewan craton, Canada: petrology, geochemistry and genesis. Gondwana Res 44:236–257

    Google Scholar 

  • Chaudhuri AK, Deb GK (2004) Proterozoic rifting in the Pranhita-Godavari Valley: Implication on India-Antarctica linkage. Gondwana Res 7(2):301–312

    Google Scholar 

  • Conticelli S (1998) The effect of crustal contamination on ultrapotassic magmas with lamproitic affinity: mineralogical, geochemical and isotope data from the Torre Alfina lavas and xenoliths, Central Italy. Chem Geol 149:51–81

    Google Scholar 

  • Conticelli S, Marchionni S, Rosa D, Giorando G, Boari E, Avanzinelli R (2009) Shoshonite and sub-alkaline magmas from an ultrapotassic volcano: Sr–Nd–Pb isotope data on Roccamonfina volcanic rocks, Roman Magmatic province, Southern Italy. Contrib Miner Pet 157:41–63

    Google Scholar 

  • Conticelli S, Avanzinelli R, Poli G, Braschi E, Giorando G (2013) Shift from lamproite-like to leucititic rocks: Sr–Nd–Pb isotope data from the Monte Cimino volcanic complex vs. the Vico stratovolcano, Central Italy. Chem Geol 353:246–266

    Google Scholar 

  • Dasgupta R, Hirschmann MM, Withers AC (2004) Deep global recycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett 227:73–85

    Google Scholar 

  • Dautria JM, Dupuy C, Takherist D, Dostal J (1992) Carbonate metasomatism in the lithospheric mantle: peridotitic xenoliths from a melilititic district of the Sahara basin. Contrib Miner Pet 111:37–52

    Google Scholar 

  • Davies GR, Stolz AJ, Mahotkin IL, Nowell GM, Pearson DG (2006) Trace element and Sr–Pb–Nd–Hf isotope evidence for ancient, fluid-dominated enrichment of the source of Aldan Shield lamproites. J Pet 47(6):1119–1146

    Google Scholar 

  • Dawson JB, Smith JV (1977) The MARID (mica–amphibole–rutile–ilmenite–diopside) suite of xenoliths in kimberlite. Geochim Cosmochim Acta 41:309–323

    Google Scholar 

  • DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202

    Google Scholar 

  • Dupuy C, Liotard JM, Dostal J (1992) Zr/Hf fractionation in intraplate basaltic rocks: carbonate metasomatism in the mantle source. Geochim Cosmochim Acta 56:2417–2423

    Google Scholar 

  • Edgar AD (1980) Role of subduction in the genesis of leucite-bearing rocks: discussion. Contrib Miner Pet 73:429–431

    Google Scholar 

  • Edgar AD, Charbonneau HE (1991) Fluorine-bearing phases in lamproites. Miner Pet 44:125–149

    Google Scholar 

  • Edgar AD, Lloyd FE, Vukadinovic D (1994) The role of fluorine in the evolution of ultrapotassic magmas. Miner Pet 51:173–193

    Google Scholar 

  • Edgar AD, Pizzolato LA, Sheen J (1996) Flourine in igneous rocks and minerals with emphasis on ultrapotassic mafic and ultramafic magmas and their mantle source regions. Miner Mag 60(399):243–257

    Google Scholar 

  • Erlank AJ, Waters FG, Hawkesworth CJ, Haggerty SE, Allsopp HL, Richard RS, Menzies M (1987) Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes, South Africa. In: Menzies MA, Hawkesworth CJ (eds) Mantle metasomatism. Academic Press, London

    Google Scholar 

  • Ferrara G, Preite-Martinez M, Taylor HP, Tonarini S, Turi B (1986) Evidence of crustal contamination, mixing of magmas and a 87Sr-rich upper mantle. Contrib Miner Pet 92:269–280

    Google Scholar 

  • Foley S (1992) Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 28:435–453

    Google Scholar 

  • Foley SF, Taylor WR, Green DH (1986) The role of fluorine and oxygen fugacity in the genesis of the ultrapotassic rocks. Contrib Miner Pet 94:382–392

    Google Scholar 

  • Förster MW, Prelević D, Schmück HR, Buhre S, Veter M, Mertz-Kraus R, Foley SF, Jacob DE (2017) Melting and dynamic metasomatism of mixed harzburgite + glimmerite mantle source: implications for the genesis of orogenic potassic magmas. Chem Geol 455:182–191

    Google Scholar 

  • Förster MW, Prelević D, Schmück HR, Buhre S, Marschall HR, Mertz-Kraus R, Jacob DE (2018) Melting phlogopite-rich MARID: lamproites and the role of alkalis in olivine-liquid Ni-partitioning. Chem Geol 476:429–440

    Google Scholar 

  • Fraser KJ, Hawkesworth CJ, Erlank AJ, Mitchell RH, Scott-Smith BH (1985) Sr, Nd and Pb isotope and minor element geochemistry of lamproites and kimberlites. Earth Planet Sci Lett 76:57–70

    Google Scholar 

  • Fritschle T, Prelević D, Foley SF, Jacob DE (2013) Petrological characterization of the mantle source of Mediterranean lamproites: indications from major and trace elements of phlogopite. Chem Geol 353:267–279

    Google Scholar 

  • Ganguly J, Bhattacharya PK (1987) Xenoliths in Proterozoic kimberlites from southern India: petrology and geophysical implications. In: Nixon PH (ed) Mantle xenoliths. Wiley, New York, pp 249–266

    Google Scholar 

  • Gao Y, Hou Z, Kamber BS, Wei R, Meng X, Zhao R (2007) Lamproitic rocks from a continental collision zone: evidence for recycling of subducted Tethyan oceanic sediments in the mantle beneath southern Tibet. J Pet 48(4):729–752

    Google Scholar 

  • Gibson SA, McMahon SC, Day JA, Dawson JB (2013) Highly refractory lithospheric mantle beneath the Tanzanian craton: evidence from Lashaine pre-metasomatic garnet-bearing peridotites. J Pet 54(8):1503–1546

    Google Scholar 

  • Green TH (1995) Significance of Nb/Ta as an indicator of geochemical process in the crust-mantle system. Chem Geol 120:347–359

    Google Scholar 

  • Gupta S, Rai SS, Prakasam KS, Srinagesh D, Bansal BK, Chadha RK, Priestley K, Gaur VK (2003) The nature of the crust in southern India: implications for Precambrian crustal evolution. Geophys Res Lett 30(8):1419. https://doi.org/10.1029/2002GL016770

    Google Scholar 

  • Harlow GE, Davies R (2004) Status report on stability of K-rich phases at mantle conditions. Lithos 77:647–653

    Google Scholar 

  • Hoffman FP (1989) Speculations on Laurentia’s first gigayear (2.0 to 1.0 Ga). Geology 17:135–138

    Google Scholar 

  • Hofmann AW, Jochum KP, Seufert M, White WM (1986) Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet Sci Lett 79:33–45

    Google Scholar 

  • Huang XL, niu Y, Xu YG, Chen LL, Yang QJ (2010) Mineralogical and geochemical constraints on the petrogenesis of post-collisional potassic and ultrapotassic rocks from western Yunnan, SW China. J Pet 51(8):1617–1654

    Google Scholar 

  • Ionov DA, Harmer RE (2002) Trace element districution in calcite–dolomite carbonatites from Spitskop: inferences for differentiation of carbonatite magmas and the origin of carbonates in mantle xenoliths. Earth Planet Sci Lett 198:495–510

    Google Scholar 

  • Ivanov AV, Demonterova EI, Savatenkov VM, Perepelov AB, Ryabov VV, Shevko AY (2018) Late Triassic (Carnian) lamproites from Noril’sk, polar Siberia: evidence for melting of the recycled Archean crust and the question of lamproite source for some placer diamond deposits of the Siberian Craton. Lithos 296–299:67–78

    Google Scholar 

  • Jacobsen SB, Wasserburg GJ (1980) Sm–Nd isotopic evolution of chondrites. Earth Planet Sci Lett 50:139–155

    Google Scholar 

  • Jaques AL, Lewis JD, Smith CB (1986) The kimberlites and lamproites of Western Australia. Geol Surv West Aust Bull 132:268

    Google Scholar 

  • Jaques AL, O’Neill HSC, Smith CB, Moon J, Chappell BW (1990) Diamondiferous peridotite xenoliths from the Argyle (AK1) lamproite pipe, Western Australia. Contrib Miner Pet 104:255–276

    Google Scholar 

  • Jochum KP, Seufert HM, Spettel B, Palme H (1986) The solar-system abundance of Nb, Ta, and Y, and the relative abundances of refractory lithophile elements in differentiated planetary bodies. Geochim Cosmochim Acta 50:1173–1183

    Google Scholar 

  • Kaila KL, Chowdhury KR, Reddy PR, Krishna VG, Narain H, Subbotin SI, Sollogub VB, Chekunov AV, Kharetchko GE, Lazarenko MA, Ilchenko TV (1979) Crustal structure along Kavali-Udipi profile in the Indian peninsular shield from deep seismic sounding. J Geol Soc India 20:307–333

    Google Scholar 

  • Kaul BL, Sisodia CP (1976) Systematic geological mapping in parts of Penukonda, Dharmavaram, Hindupur Taluks of Anantapur district, Andhra Pradesh. Progress report for the field session 1975–76, Geological Survey of India

  • Kaur G, Mitchell RH, Suhel A (2017) Mineralogy of the Vattikod lamproite dykes, Ramadugu lamproite field, Nalgonda district, Telangana: a possible expression of ancient subduction-related alkaline magmatism along Eastern Ghats Mobile belt, India. Miner Mag. https://doi.org/10.1180/minmag.2017.081.045

    Google Scholar 

  • Konzett J, Ulmer P (1999) The stability of hydrous potassic phases in lherzolitic mantle—an experimental study to 9.5 GPa in simplified and natural bulk compositions. J Pet 40(4):629–652

    Google Scholar 

  • Krmíček L, Cempírek J, Havlín A, Přichystal A, Houzar S, Krmíčková M, Gadas P (2011) Mineralogy and petrogenesis of a Ba–Ti–Zr-rich peralkaline dyke from Šebkovice (Czech Republic): recognition of the most lamproitic Variscan intrusion. Lithos 121:74–86

    Google Scholar 

  • Krmíček L, Romer RL, Ulrych J, Glodny J, Prelević D (2016) Petrogenesis of orogenic lamproites of the Bohemian Massif: Sr–Nd–Pb–Li isotope constraints for Variscan enrichment of ultra-depleted mantle domains. Gondwana Res 35:198–216

    Google Scholar 

  • Kumar A, Gopalan K, Rao KRP, Nayak SS (2001) Rb-Sr age of kimberlites and lamproites from eastern Dharwar craton, south India. J Geol Soc India 58:135–141

    Google Scholar 

  • Kumar A, Ahmed S, Priya R, Sridhar M (2013) Discovery of lamproites near Vattikod area, NW margin of the Cuddapah basin, southern India. J Geol Soc India 82:307–312

    Google Scholar 

  • Kumar A, Parashuramulu V, Nagaraju E (2015) A 2082 Ma radiating dyke swarm in the eastern Dharwar craton, southern India and its implications to Cuddapah basin formation. Precambrian Res 266:490–505

    Google Scholar 

  • Kushiro I, Syono Y, Akimoto S (1967) Stability of phlogopite at high pressures and possible presence of phlogopite in the earth’s upper mantle. Earth Planet Sci Lett 3:197–203

    Google Scholar 

  • Lustrino M, Wilson M (2007) The circum-Mediterranean anorogenic Cenozoic igneous province. Earth-Sci Rev 81:1–65

    Google Scholar 

  • Lustrino M, Agostini S, Chalal Y, Fedele L, Stagno V, Colombi F, Bouguerra A (2016) Exotic lamproites or normal ultrapotassic rocks? The Late Miocene volcanic rocks from Kef Hahouner, NE Algeria, in the frame of the circum-Mediterranean lamproites. J Volcanol Geotherm Res 327:539–553

    Google Scholar 

  • Mallik A, Nelson J, Dasgupta R (2015) Partial melting of fertile peridotite fluxed by hydrous rhyolitic melt at 2–3 GPa: implications for mantle wedge hybridization by sediment melt and generation of ultrapotassic magmas in convergent margins. Contrib Miner Pet 169:48. https://doi.org/10.1007/s00410-015-1139-2

    Google Scholar 

  • McCulloch MT, Jaques AL, Nelson DR, Lewis JD (1983) Nd and Sr isotopes in kimberlites and lamproites from Western Australia: an enriched mantle origin. Nature 302:400–403

    Google Scholar 

  • McKenzie D (1989) Some remarks on the movement of small melt fractions in the mantle. Earth Planet Sci Lett 95:53–72

    Google Scholar 

  • McKenzie D, O’Nions RK (1991) Partial melt distributions from inversion of rare Earth element concentrations. J Pet 32:1021–1091

    Google Scholar 

  • Meert JG, Santosh M (2017) The Columbia supercontinent revisited. Gondwana Res 50:67–83

    Google Scholar 

  • Menzies MA, Kyle P (1990) Continental volcanism: a crust-mantle probe. In: Menzies MA (ed) The continental mantle. Clarendon Press, Oxford

    Google Scholar 

  • Michard A, Gurriet P, Soudant M, Albarede F (1985) Nd isotopes in French Phanerozoic shales: external vs. internal aspects of crustal evolution. Geochim Cosmochim Acta 49:601–610

    Google Scholar 

  • Mirnejad H, Bell K (2006) Origin and source evolution of the Leucite hills lamproites: evidence from Sr–Nd–Pb–O isotopic compositions. J Pet 47(12):2463–2489

    Google Scholar 

  • Mitchell RH (1995) Kimberlites, orangeites and related rocks. Plenum Press, New York

    Google Scholar 

  • Mitchell RH, Bergman SC (1991) Petrology of lamproites. Plenum Press, New York

    Google Scholar 

  • Murphy DT, Collerson KD, Kamber BS (2002) Lamproites from Gaussberg, Antarctica: possible transition zone melts of Archean subducted sediments. J Pet 43(6):981–1001

    Google Scholar 

  • Nelson DR (1989) Isotopic characteristics and petrogenesis of the lamproites and kimberlites of central west Greenland. Lithos 22:265–274

    Google Scholar 

  • Nelson DR (1992) Isotopic characteristics of potassic rocks: evidence for the involvement of subducted sediments in magma genesis. Lithos 28:403–420

    Google Scholar 

  • Nelson DR, McCulloch MT, Sun SS (1986) The origins of ultrapotassic rocks as inferred from Sr, Nd and Pb isotopes. Geochim Cosmochim Acta 50:231–245

    Google Scholar 

  • Osborne I, Sherlock S, Anand M, Argles T (2011) New Ar–Ar ages of southern Indian kimberlites and a lamproite and their geochemical evolution. Precambrian Res 189:91–103

    Google Scholar 

  • Othman DB, White WM, Patchett J (1989) The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth Planet Sci Lett 94:1–21

    Google Scholar 

  • Pandey A, Chalapathi Rao NV, Pandit D, Pankaj P, Pandey R, Sahoo S, Kumar A (2017a) Subduction-tectonics in the evolution of the eastern Dharwar craton, southern India: insights from the post-collisional calc-alkaline lamprophyres at the western margin of the Cuddapah basin. Precambrian Res 298:235–251

    Google Scholar 

  • Pandey R, Chalapathi Rao NV, Pandit D, Sahoo S, Dhote P (2017a) Imprints of modal metasomatism in the post- Deccan subcontinental lithospheric mantle: petrological evidence from an ultramafic xenolith in an Eocene lamprophyre, NW India. Geol Soc Lond Spec Publ 463. https://doi.org/10.1144/SP463.6

    Google Scholar 

  • Pandey R, Chalapathi Rao NV, Dhote P, Pandit D, Choudhary AK, Sahoo S, Lehmann B (2017b) Rift-associated ultramafic lamprophyre (damtjernite) from the middle part of the Lower Cretaceous (125 Ma) succession of Kutch, northwestern India: tectonomagmatic implications. Geosci Front. https://doi.org/10.1016/j.gsf.2017.10.013

    Google Scholar 

  • Pandey A, Chalapathi Rao NV, Chakrabarti R, Pandit D, Pankaj P, Kumar A, Sahoo S (2017b) Petrogenesis of a Mesoproterozoic shoshonitic lamprophyre dyke from the Wajrakarur kimberlite field, eastern Dharwar craton, southern India: geochemical and Sr–Nd isotopic evidence for a modified sub-continental lithospheric mantle source. Lithos 292–293:218–233

    Google Scholar 

  • Paul DK, Crocket JH, Reddy TAK, Pant NC (2007) Petrology and geochemistry including Platinum Group element abundances of the Mesoproterozoic ultramafic (lamproite) rocks of Krishna district, southern India: implications for source rock characteristics and petrogenesis. J Geol Soc India 69:577–596

    Google Scholar 

  • Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48

    Google Scholar 

  • Peccerillo A, Martinotti G (2006) The western Mediterranean lamproitic magmatism: origin and geodynamic significance. Terra Nova 18(2):109–117

    Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Miner Pet 58:63–81

    Google Scholar 

  • Phillips D (2012) Comment on “New Ar–Ar ages of southern Indian kimberlites and a lamproite and their geochemical evolution” by Osborne et al. [Precambrian Res 189:(2011) 91–103]. Precambrian Res 208–211:49–52

    Google Scholar 

  • Pilet S, Baker MB, Stolper EM (2008) Metasomatized lithosphere and the origin of alkaline lavas. Science 320:916–919

    Google Scholar 

  • Pilet S, Baker MB, Muntener O, Stolper EM (2011) Monte Carlo simulations of metasomatic enrichment in the lithosphere and implications for the source of alkaline basalts. J Pet 52:1415–1442

    Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394

    Google Scholar 

  • Platz T, Foley SF, Andre L (2004) Low-pressure fractionation of the Nyiragongo volcanic rocks, Virunga province, D.R. Congo. J Volcanol Geoth Res 136:269–295

    Google Scholar 

  • Pradhan VR, Meert JG, Pandit MK, Kamenov G, Gregory LC, Malone SJ (2010) India’s changing place in global Proterozoic reconstructions: a review of geochronologic constraints and paleomagnetic poles from the Dharwar, Bundelkhand and Marwar cratons. J Geodyn 50(3–4):224–242

    Google Scholar 

  • Prelević D, Foley SF (2007) Accretion of arc-oceanic lithospheric mantle in the Mediterranean: evidence from extremely high-Mg olivines and Cr-rich spinel inclusion in lamproites. Earth Planet Sci Lett 256:120–135

    Google Scholar 

  • Prelević D, Foley SF, Romer R, Conticelli S (2008) Mediterranean Tertiary lamproites derived from multiple source components in postcollisional geodynamics. Geochim Cosmochim Acta 72:2125–2156

    Google Scholar 

  • Prelević D, Akal C, Foley SF, Romer RL, Stracke A, Den Boggard PV (2012) Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: tha case of southwestern Anatolia, Turkey. J Pet 53(5):1019–1055

    Google Scholar 

  • Prelević D, Jacob DE, Foley SF (2013) Recycling plus: a new recipe for the formation of Alpine–Himalayan orogenic mantle lithosphere. Earth Planet Sci Lett 362:187–197

    Google Scholar 

  • Prelević D, Akal C, Romer RL, Mertz-Kraus R, Helvaci C (2015) Magmatic response to slab tearing: constraints from the Afyon alkaline volcanic complex, Western Turkey. J Pet 56(3):527–562

    Google Scholar 

  • Ramakrishnan M, Vaidyanadhan R (2008) Geology of India. Geol Soc India, Bangalore

    Google Scholar 

  • Rapp RP, Irifune T, Shimizu N, Nishiyama N, Norman MD, Inoue T (2008) Subduction recycling of continental sediments and the origin of geochemically enriched reservoirs in the deep mantle. Earth Planet Sci Lett 271:14–23

    Google Scholar 

  • Raval U, Veeraswamy K (2003) India-Madagascar separation: breakup along a pre-existing mobile belt and chipping of the craton. Gondwana Res 6(3):467–485

    Google Scholar 

  • Ravi S, Bhaskara Rao KS, Rao KRP (1998) Search for kimberlites in the granite-greenstone-terrain in the central segment of Wajrakarur kimberlite field, Anantapur district, Andhra Pradesh. Rec Geol Sur India 132:40–41

    Google Scholar 

  • Reddy TAK, Sridhar M, Ravi S, Chakravarthi V, Neelakantam S (2003) Petrography and geochemistry of the Krishna lamproite field, Andhra Pradesh. J Geol Soc India 61:131–146

    Google Scholar 

  • Rieder M, Cavazzini D, Yakonov YSD, Frank-Kamenetskii VA, Gottardi G, Guggenheim S, Koval PV, Muller G, Neiva AMR, Radoslovich EW, Robert JL, Sassi FP, Takeda H, Weiss Z, Wones DR (1998) Nomenclature of the micas. Can Miner 36:905–912

    Google Scholar 

  • Righter K, Carmichael ISE (1996) Phase equilibria of phlogopite lamprophyres from western Mexico: biotite-liquid equilibria and P-T estimates for biotite-bearing igneous rocks. Contrib Miner Pet 123:1–21

    Google Scholar 

  • Ringwood AE, Kesson SE, Hibberson W, Ware N (1992) Origin of kimberlites and related magmas. Earth Planet Sci Lett 113:521–538

    Google Scholar 

  • Robinson JAC, Wood BJ (1998) The depth of the spinel to garnet transition at the peridotite solidus. Earth Planet Sci Lett 164:277–284

    Google Scholar 

  • Rock NMS (1987) The nature and origin of lamprophyres: an overview, vol 30. In: Fitton JG, Upton BGJ (eds) Alkaline igneous rocks. Geol Soc Spec Publ, pp 191–226

  • Rogers JJW, Santosh M (2002) Configuration of Columbia, a mesoproterozoic supercontinent. Gondwana Res 5(1):5–22

    Google Scholar 

  • Rogers JJW, Santosh M (2003) Supercontinents in Earth history. Gondwana Res 6(3):357–368

    Google Scholar 

  • Roy S, Mareschal J-C (2011) Constraints on the deep thermal structure of the Dharwar craton, India, from heat flow, shear wave velocities, and mantle xenoliths. J Geophys Res 116:B02409. https://doi.org/10.1029/2010JB007796

    Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. Elsevier, Oxford, pp 1–64

    Google Scholar 

  • Rudnick RL, McDonough WF, Chappell BW (1993) Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet Sci Lett 114:463–475

    Google Scholar 

  • Rukhlov AS, Blinova AI, Pawlowicz JG (2013) Geochemistry, mineralogy and petrology of the Eocene potassic magmatism from the Milk River area, southern Alberta, and Sweet Grass Hills, northern Montana. Chem Geol 353:280–302

    Google Scholar 

  • Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophy Geosy. https://doi.org/10.1029/2003GC000597

    Google Scholar 

  • Santosh M, Hari KR, He X-F, Han Y-S, Manu Prasanth MP (2018) Oldest lamproite from peninsular India track the onset of Paleoproterozoic plume-induced rifting and the birth of large igneous province. Gondwana Res 55:1–20

    Google Scholar 

  • Schreyer W (1988) Experimental studies on metamorphism of crustal rocks under mantle pressures. Miner Mag 52:1–26

    Google Scholar 

  • Schreyer W, Massone HJ, Chopin C (1987) Continental crust subducted to depths near 100 km: implications for magma and fluid genesis in collision zones. In: Mysen BO (ed) Magmatic processes: physicochemical principles, vol 1. Geochemical Society Special Publications, pp 155–163

  • Shaikh AM, Patel SC, Ravi S, Behera D, Pruseth KL (2017) Mineralogy of the TK1 and TK4 ‘kimberlites’ in the Timmasamudram cluster, Wajrakarur kimberlite field, India: Implications for lamproite magmatism in a field of kimberlites and ultramafic lamprophyres. Chem Geol 455:208–230

    Google Scholar 

  • Shaw RK, Arima M, Kagamo H, Fanning CM, Shiraishi K, Motoyoshi M (1997) Proterozoic events in the Eastern Ghats granulite belt, India: evidence from Rb–Sr, Sm–Nd systematics, and SHRIMP dating. J Geol 105:645 656

    Google Scholar 

  • Shivanna S, Srivastava JK, Nambiar AR (2002) Kimberlite occurrence in Raichur area, Karnataka. J Geol Soc India 60:478–480

    Google Scholar 

  • Sims KWW, DePaolo DJ (1997) Inferences about mantle magma sources from incompatible element concentration ratios in oceanic basalts. Geochim Cosmochim Acta 61(4):765–784

    Google Scholar 

  • Smith EI, Sánchez A, Douglas Walker J, Wang K (1999) Geochemistry of mafic magmas in the hurricane volcanic field, Utah: implications for small- and large-scale chemical variability of the lithospheric mantle. J Geol 107(4):433–448

    Google Scholar 

  • Sossi PA, Eggins SM, Nesbitt RW, Nebel O, Hergt JM, Campbell IH, O’Neill HSC, Kranendonk MV, Davies DR (2016) Petrogenesis and geochemistry of Archean komatiites. J Pet 57(1):147–184

    Google Scholar 

  • Sridhar M, Rau TK (2005) Discovery of a new lamproite field–Ramadugu lamproite field (RLF), Nalgonda district, Andhra Pradesh. In: Proceedings of the group discussion on kimberlites and related rocks of India. Organized by the Geological Society of India, Bangalore, pp 55–57 (extended abstracts)

  • Srivastava RK, Samal AK, Gautam GC (2014) Geochemical characteristics and petrogenesis of four Palaeoproterozoic mafic dyke swarms and associated large igneous provinces from the eastern Dharwar craton, India. Int Geol Rev. https://doi.org/10.1080/00206814.2014.938366

    Google Scholar 

  • Stern RJ, Leybourne MI, Tsujimori T (2016) Kimberlites and the start of plate tectonics. Geology 44(10):799–802

    Google Scholar 

  • Sudo A, Tatsumi Y (1990) Phlogopite and K-amphibole in the upper mantle: implication for magma genesis in subduction zones. Geophys Res Lett 17(1):29–32

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345

    Google Scholar 

  • Sushchevskaya NM, Migdisova NA, Antonov AV, Krymsky RSh, Belyatsky BV, Kuzmin DV, Bychkova YaV (2014) Geochemical features of the quaternary lamproitic lavas of Gaussberg volcano, east Antarctica: result of the impact of the Kerguelen Plume. Geochem Int 52(12):1030–1048

    Google Scholar 

  • Tainton KM, McKenzie D (1994) The generation of kimberlites, lamproites, and their source rocks. J Pet 35(3):787–817

    Google Scholar 

  • Takahashi E (1990) Speculations on the Archean mantle: missing link between komatiite and depleted garnet peridotite. J Geophys Res 95:15941–15954

    Google Scholar 

  • Tappe S, Jenner GA, Foley SF, Heaman L, Besserer D, Kjarsgaard BA, Ryan B (2004) Torngat ultramafic lamprophyres and their relation to the North Atlantic alkaline province. Lithos 76:491–518

    Google Scholar 

  • Tappe S, Foley SF, Jenner GA, Heaman LM, Kjarsgaard BA, Romer RL, Stracke A, Joyce N, Hoefs J (2006) Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic Craton. J Pet 47(7):1261–1315

    Google Scholar 

  • Tappe S, Foley SF, Stracke A, Romer RL, Kjarsgaard BA, Heaman LM, Joyce N (2007) Craton reactivation on the Labrador Sea margins: 40Ar/39Ar age and Sr-Nd-Hf-Pb isotope constraints from alkaline and carbonatite intrusives. Earth Planet Sci Lett 256:433–454

    Google Scholar 

  • Tappe S, Foley SF, Kjarsgaard BA, Romer RL, Heaman LM, Stracke A, Jenner GA (2008) Between carbonatite and lamproite—Diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes. Geochim Cosmochim Acta 72:3258–3286

    Google Scholar 

  • Tappe S, Brand NB, Stracke A, van Acken D, Liu CZ, Strauss H, Wu FY, Luguet A, Mitchell RH (2017a) Plates or plumes in the origin of kimberlites: U/Pb perovskite and Sr–Nd–Hf–Os–C–O isotope constraints from the superior craton (Canada). Chem Geol 455:57–83

    Google Scholar 

  • Tappe S, Romer RL, Stracke A, Steenfelt A, Smart KA, Muehlenbachs K, Torsvik TH (2017b) Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation. Earth Planet Sci Lett 466:152–167

    Google Scholar 

  • Tappe S, Smart K, Torsvik T, Massuyeau M, de Wit M (2018) Geodynamics of kimberlites on a cooling Earth: clues to plate tectonic evolution and deep volatile cycles. Earth Planet Sci Lett 484:1–14

    Google Scholar 

  • Taylor SR, McLennan SM (1981) The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks. Philos Trans R Soc Lond A 301:381–399

    Google Scholar 

  • Thompson RN (1974) Some high-pressure pyroxenes. Miner Mag 39:768–787

    Google Scholar 

  • Tommasini S, Avanzinelli R, Conticelli S (2011) The Th/La and Sm/La conundrum of the Tethyan realm lamproites. Earth Planet Sci Lett 301:469–478

    Google Scholar 

  • Turner SP, Platt JP, George RMM, Kelley SP, Pearson DG, Nowell GM (1999) Magmatism associated with orogenic collapse of the Betic–Alboran domain, SE Spain. J Pet 40(6):1011–1036

    Google Scholar 

  • Turpin L, Velde D, Pinte G (1988) Geochemical comparison between minettes and kersantites from the Western European Hercynian orogen: trace element and Pb–Sr–Nd isotope constraints on their origin. Earth Planet Sci Lett 87:73–86

    Google Scholar 

  • Upadhyay D (2008) Alkaline magmatism along the southeastern margin of the Indian shield: implications for regional geodynamics and constraints on craton-Eastern Ghats Belt suturing. Precambrian Res 162:59–69

    Google Scholar 

  • Upadhyay D, Raith MM, Mezger K, Bhattacharya A, Kinny PD (2006a) Mesoproterozoic rifting and Pan-African continental collision in SE India: evidence from the Khariar alkaline complex. Contrib Miner Pet 151:434–456

    Google Scholar 

  • Upadhyay D, Raith MM, Mezger K, Hammerschmidt K (2006b) Mesoproterozoic rift-related alkaline magmatism at Elchuru, Prakasam Alkaline province, SE India. Lithos 89:447–477

    Google Scholar 

  • Veizer J, Hoefs J, Lowe DR, Thurston PC (1989) Geochemistry of Precambrian carbonates: II. Archean greenstone belts and Archean sea water. Geochim Cosmochim Acta 53:859–871

    Google Scholar 

  • Vinogradov AP, Turgarino AI, Zhjkov C, Stapnikova N, Bibikova E, Khores K (1964) Geochronology of Indian Precambrian. In: 10th Int Geol Cong, New Delhi, pp 553–567

    Google Scholar 

  • Vukadinovic D, Edgar AD (1993) Phase relation in the phlogopite apatite system at 20 kbar, implications for the role of fluorine in mantle melting. Contrib Miner Pet 114:247–254

    Google Scholar 

  • Wang Y, Foley SF, Prelević D (2017) Potassium-rich magmatism from a phlogopite-free source. Geology 45(5):467–470

    Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59(7):1217–1232

    Google Scholar 

  • Wendlandt RF, Eggler DH (1980) The origins of potassic magmas: 2. Stability of phlogopite in natural spinel lherzolite and in the system KAlSiO4–MgO–SiO2–H2O–CO2 at high pressures and high temperatures. Am J Sci 280:421–458

    Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Miner 95:185–187

    Google Scholar 

  • Wilsom M (1989) Igneous petrogenesis. A global tectonic approach. Unwin Hyman, London

    Google Scholar 

  • Wilson M, Bianchini G (1999) Tertiary–Quaternary magmatism within the Mediterranean and surrounding regions. In: Durand B, Jolivet L, Horváth F, Séranne M (eds) The Mediterranean basins: tertiary extension within the Alpine orogen, vol 156. Geological Society, London, Special Publications, pp 141–168

  • Wilson M, Downes H (1991) Tertiary–Quaternary extension-related alkaline magmatism in western and central Europe. J Pet 32(4):811–849

    Google Scholar 

  • Yaxley GM, Crawford AJ, Green DH (1991) Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet Sci Lett 107:305–317

    Google Scholar 

  • Yaxley GM, Green DH, Kamenetsky V (1998) Carbonatite metasomatism in the southeastern Australian lithosphere. J Pet 39(11/12):1917–1930

    Google Scholar 

  • Yilmaz K (2010) Origin of anorogenic ‘lamproite-like’ potassic lavas from the Denizli region in western Anatolia extensional province, Turkey. Miner Pet 99:219–239

    Google Scholar 

  • Zhao G, Cawood PA, Wilde SA, Sun M (2002) Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth Sci Rev 59:125–162

    Google Scholar 

  • Zhao G, Sun M, Wilde SA, Li S (2004) A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth Sci Rev 67:91–123

    Google Scholar 

Download references

Acknowledgements

The Head, Department of Geology, BHU, Varanasi is thanked for extending the facilities. DST-SERB, New Delhi is thanked for sanctioning a major research project (IR/S4/ESF-18/2011 dated 12.11.2013) to NVCR for understanding mantle evolution beneath the Indian Shield. DP thanks DST-SERB for financial assistance in the form of a research scientist. CSIR is acknowledged for awarding JRF to DT and SPMF to AP. Dan McKenzie (Cambridge, UK) is thanked for extending his help in carrying out inversion modeling. The two journal reviewers Sebastian Tappe and Dejan Prelević together with Editor-in-chief Othmar Müntener are sincerely thanked for invaluable suggestions which considerably improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Chalapathi Rao.

Additional information

Communicated by Othmar Müntener.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 KB)

Supplementary material 2 (XLSX 30 KB)

Supplementary material 3 (XLSX 33 KB)

410_2018_1493_MOESM4_ESM.tif

Supplementary Figure 1 Additional photomicrographs showing the mineral phases in VLF restricted to the groundmass. a Clustering of phlogopite giving rise to glomerophyric texture; b Allanite in the groundmass (TIF 22684 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talukdar, D., Pandey, A., Chalapathi Rao, N.V. et al. Petrology and geochemistry of the Mesoproterozoic Vattikod lamproites, Eastern Dharwar Craton, southern India: evidence for multiple enrichment of sub-continental lithospheric mantle and links with amalgamation and break-up of the Columbia supercontinent. Contrib Mineral Petrol 173, 67 (2018). https://doi.org/10.1007/s00410-018-1493-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-018-1493-y

Keywords

Navigation