Skip to main content

Advertisement

Log in

Reconstructions of lithospheric mantle beneath Aldan shield based on deep-seated xenocrysts from lamprophyres of Chompolo field, Russia

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Lamprophyric (lamproitic) diatremes in Chompolo field, NE Aldan shield, Siberia dated 132 Ma contain abundant mantle xenocrysts studied by EPMA and LA-ICP-MS. The deepest rocks ~6.5 GPa determined with thermobarometry are phlogopite eclogites. Thermobarometry on pyrope garnets, Cr-diopside and chromites yield a relatively low-temperature geotherm of 35 mW/m2 at the base to 55 mW/m2 at the Moho, while orthopyroxenes give 55 mW/m2. Amphiboles vary from magmatic Cr-hornblendes to metasomatic richterites. Trace element patterns for the host monchiquite are inclined with HFSE minima and are common for all Aldan lamprophyres but there are also more strongly inclined lamproitic varieties with ten times higher LREE contents. The geochemistry of Cr-diopsides, pyrope garnets and phlogopites reveal ancient multistage metasomatism of an originally depleted mantle keel related to both continental subduction and mantle plume activity. The lithospheric mantle is composed of harzburgites, roughly layered with rare dunites. Garnets appear widely at depths from 5.5 to 4.5 GPa. Trace element patterns show four groups from dunites to pyroxenites, related to low degree melting of hydrous and carbonatite melts. Clinopyroxenes reflect various melting degrees and variable trace element contents. The high-temperature orthopyroxene-based branches of the geotherm resulted from the percolation of hydrous plume-related melts. The high temperature 90 mW/m2 geotherm from 2.5 GPa to the Moho reflects fractionation of Fe-rich plume-related siliceous melts. Eclogites and metasomatites melting at the lithosphere base produce lamprophyres rich in LREE (100/C1), LILE, Zr and Ta–Nb minima. The Mg-lamproites are more LREE-enriched to 1000/C1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

References

  • Abbot D H, Drury R and Mooney W 1997 Continents as lithological icebergs: The importance of buoyant lithospheric roots; Earth Planet. Sci. Lett. 149 15–27.

    Article  Google Scholar 

  • Afanasiev V P, Ashchepkov I V, Verzhak V V, O’Brien H and Palessky S V 2013 P–T conditions and trace element variations of picroilmenites and pyropes from the Arkhangelsk region; J. Asian Earth Sci. 70–71 45–63.

    Article  Google Scholar 

  • Alifirova T, Rezvukhin D, Nikolenko E, Pokhilenko L, Zelenovskiy P, Sharygin I, Korsakov A and Shur V 2020 Micro-Raman study of crichtonite group minerals enclosed into mantle garnet; J. Raman Spectrosc. 51(9) 1493–1512.

    Article  Google Scholar 

  • Arai S 1984 Pressure–temperature dependent compositional variation of phlogopitic micas in upper mantle peridotites; Contrib. Mineral. Petrol. 87 260–264.

    Article  Google Scholar 

  • Ashchepkov I V, Afanasiev V P, Ntaflos T, Downes H, Logvinova A M, Smelov A P, Vladykin N V, Agashev A M, Rotman A Y, Kuligin S S, Vavilov M A, Tychkov N S, Nigmatulina E N and Khmelnikova O S 2013 Regularities of the mantle lithosphere structure and formation beneath Siberian craton in comparison with other cratons; Gondwana Res. 23 4–24.

    Article  Google Scholar 

  • Ashchepkov I V, Vladykin N N, Ntaflos T, Kostrovitsky S I, Prokopiev S A, Downes H, Smelov A P, Agashev A M, Logvinova A M, Kuligin S S, Tychkov N S, Salikhov R F, Stegnitsky Yu B, Alymova N V, Vavilov M A, Minin V A, Babushkina S A, Ovchinnikov Yu I, Karpenko M A, Tolstov A V and Shmarov G P 2014a Layering of the lithospheric mantle beneath the Siberian Craton: Modeling using thermobarometry of mantle xenolith and xenocrysts; Tectonophys. 634 55–75.

    Article  Google Scholar 

  • Ashchepkov I V, Alymova N V, Logvinova A M, Vladykin N V, Kuligin S S, Mityukhin S I, Downes H, Stegnitsky Y B, Prokopiev S A, Salikhov R F, Palessky V S and Khmel’nikova O S 2014b Picroilmenites in Yakutian kimberlites: Variations and genetic models; Solid Earth 5 915–938.

    Article  Google Scholar 

  • Ashchepkov I V, Kuligin S S, Vladykin N V, Downes H, Vavilov M A, Nigmatulina E N, Babushkina S A, Tychkov N S and Khmelnikova O S 2016 Comparison of mantle lithosphere beneath early Triassic kimberlite fields in Siberian craton reconstructed from deep-seated xenocrysts; Geosci. Front. 7 639–662.

    Article  Google Scholar 

  • Ashchepkov I V, Logvinova A M, Reimers L F, Ntaflos T, Spetsius Z V, Vladykin N V, Downes H, Yudin D S, Travin A V, Makovchuk I V, Palesskiy V S and Khmel’nikova O S 2015 The Sytykanskaya kimberlite pipe: Evidence from deep-seated xenoliths and xenocrysts for the evolution of the mantle beneath Alakit, Yakutia, Russia; Geosci. Front. 6 687–714.

    Article  Google Scholar 

  • Ashchepkov I V, Ntaflos T, Logvinova A M, Spetsius Z V, Downes H and Vladykin N V 2017a Monomineral universal clinopyroxene and garnet barometers for peridotitic, eclogitic and basaltic systems; Geosci. Front. 8 775–795.

    Article  Google Scholar 

  • Ashchepkov I V, Logvinova A M, Ntaflos T, Vladykin N V and Downes H 2017b Alakit and Daldyn kimberlite fields Siberia Russia: Two types of mantle sub-terranes beneath central Yakutia?; Geosci. Front. 8 671–692.

    Article  Google Scholar 

  • Ashchepkov I V, Ntaflos T, Spetsius Z V, Salikhov R F and Downes H 2017c Interaction between protokimberlite melts and mantle lithosphere: Evidence from mantle xenoliths from the Dalnyaya kimberlite pipe Yakutia (Russia); Geosci. Front. 8 693–710.

    Article  Google Scholar 

  • Ashchepkov I V, Pokhilenko N P, Vladykin N V, Logvinova A M, Kostrovitsky S I, Afanasiev V P, Pokhilenko L N, Kuligin S S, Malygina L V, Alymova N V, Khmelnikova O S, Palessky S V, Nikolaeva I V, Karpenko M A and Stagnitsky Y B 2010 Structure and evolution of the lithospheric mantle beneath Siberian craton thermobarometric study; Tectonophys. 485 17–41.

    Article  Google Scholar 

  • Ashchepkov I V, Gerasimov P, Khmel’nikova O, Anoshin G, Vladykin N and Saprykin A 2001a Temperature gradient and structure of the lithospheric block beneath the southeastern margin of the Siberian craton: Disintegrated xenolith evidence from kimberlitic pipes of the Aldan shield; Doklady Earth Sci. 378 495–499.

    Google Scholar 

  • Aschepkov I V, Vladykin N V, Saprykin A I, Khmelnikova O S and Anoshin G N 2001b Composition and thermal structure of the mantle in peripheral parts of Siberian craton; Revista Brasileira De Geociencias 31 493–496.

    Google Scholar 

  • Ashchepkov I V, Vladykin N V, Gerasimov P A, Saprykin A I, Khmelnikova O S and Anoshin G N 2001c Petrology and mineralogy of disintegrated mantle inclusions of kimberlite- like diatremes from the Aldan shield (Chompolo field): Mantle reconstructions; In: Alkaline magmatism and the problems of mantle sources Irkutsk: Vinogradov Institute of Geochemistry (ed.) Vladykin N V, pp. 161–176.

  • Ashchepkov I 2017 Single grain amphibole thermobarometer for mantle rocks; Geophys. Res. Abstracts 19 EGU2017-3889.

  • Ashchepkov I V, Medvedev N S, Vladykin N V, Ivanov A C and Downes H 2020 Thermobarometry and geochemistry of mantle xenoliths from Zapolyarnaya pipe, Upper Muna field, Yakutia: Implications for mantle layering, interaction with plume melts and diamond grade; Minerals 10 755.

    Article  Google Scholar 

  • Ashchepkov I V, Vladykin N V, Kalashnyk H A, Medvedev N S, Saprykin A I, Downes H and Khmelnikova O S 2021 Incompatible element-enriched mantle lithosphere beneath kimberlitic pipes in Priazovie, Ukrainian shield: Volatile-enriched focused melt flow and connection to mature crust?; Int. Geol. Rev. 63(10) 1288–1309.

    Article  Google Scholar 

  • Ashchepkov I V, Ivanov A S, Kostrovitsky S I, Vavilov M A, Babushkina S A, Smelov A P, Egorov K N, Tychkov N S and Medvedev N S 2019 Mantle terranes of the Siberian Craton: Their interaction with Plume melts based on thermobarometry and geochemistry of mantle Xenocrysts; Geodyn. Tectonophys. 10(2) 197–245.

    Article  Google Scholar 

  • Atkinson W, Smith C and Boxer G 1984 The discovery and geology of the Argyle diamond deposits Kimberley Western Australia; In: Proceedings of the Darwin Conference Australasian Institute of Mining and Metallurgy Darwin City, Australia, pp. 141–149.

  • Aulbach S, Stachel T, Heaman L M, Creaser R A and Shirey S B 2011 Formation of cratonic subcontinental lithospheric mantle and complementary komatiite from hybrid plume sources; Contrib. Mineral. Petrol. 161 947–960.

    Article  Google Scholar 

  • Aulbach S, Griffin W L, Pearson N J, O’Reilly S Y, Kivi K and Doyle B J 2004 Mantle formation and evolution Slave Craton: Constraints from HSE abundances and Re–Os isotope systematics of sulfide inclusions in mantle xenocrysts; Chem. Geol. 208 61–88.

    Article  Google Scholar 

  • Batumike J M, Griffin W L and O’Reilly S Y 2009 Lithospheric mantle structure and the diamond potential of kimberlites in southern D R Congo; Lithos 112(S1) 166–176.

    Article  Google Scholar 

  • Bergman S C 1987 Lamproites and other potassium-rich igneous rocks: A review of their occurrence mineralogy and geochemistry; In: Alkaline Igneous Rocks (eds) Fitton J G and Upton B G J, Geolo. Soc. London, Spec. Publ. 30 103–190.

  • Bogatikov O A, Kononova V A, Pervov V A and Zhuravlev D Z 1994 Petrogenesis of Mesozoic potassic magmatism of the Central Aldan: A Sr–Nd isotopic and geodynamic model; Int. Geol. Rev. 36 629–644.

    Article  Google Scholar 

  • Bogatikov O A, Kononova V A, Nosova A A and Kondrashov I A 2007 Kimberlites and lamproites of the East European platform: Petrology and geochemistry; Petrology 15 315–334.

    Article  Google Scholar 

  • Boyd F R, Pokhilenko N P, Pearson D G, Mertzman S A, Sobolev N V and Finger L W 1997 Composition of the Siberian cratonic mantle: Evidence from Udachnaya peridotites xenoliths; Contrib. Mineral. Petrol. 128 228–246.

    Article  Google Scholar 

  • Brey G P and Kohler T 1990 Geothermobarometry in four-phase lherzolites II New thermobarometers and practical assessment of existing thermobarometers; J. Petrol. 31 1353–1378.

    Article  Google Scholar 

  • Carlson R W, Esperança S and Svisero D P 1996 Chemical and Os isotopic study of Cretaceous potassic rocks from Southern Brazil; Contrib. Mineral. Petrol. 125 93–405.

    Article  Google Scholar 

  • Chaika I F and Izokh A E 2018 Dunites of the Inagli massif Central Aldan cumulates of lamproitic magma; Russian Geol. Geophys. 59 1450–1460.

    Article  Google Scholar 

  • Chalapathi Rao N V 2005 A petrological and geochemical reappraisal of the Mesoproterozoic diamondiferous Majhgawan pipe of central India: Evidence for transitional kimberlite – orangeite (group II kimberlite – lamproite rock type; Mineral. Petrol. 84 69–106.

    Article  Google Scholar 

  • Chalapathi Rao N C, Gibson S, Pyle D and Dickin A 2004 Petrogenesis of proterozoic lamproites and kimberlites from the Cuddapah basin and dharwar craton southern India; J. Petrol. 45 907–948.

    Article  Google Scholar 

  • Chalapathi Rao N V, Kamde G, Kale H S and Dongre A 2010 Petrogenesis of the mesoproterozoic lamproites from the Krishna valley eastern dharwar craton southern India; Precamb. Res. 177 103–130.

    Article  Google Scholar 

  • Chalapathi Rao N V, Creaser R A, Lehmann R A and Panwar B K 2013 Re–Os isotope study of Indian kimberlites and lamproites: Implications for mantle source regions and cratonic evolution; Chem. Geol. 353 36–47.

    Article  Google Scholar 

  • Cull J P, O’Reilly S Y and Griffin W L 1991 Xenolith geotherms and crustal models in eastern Australia; Tectonophys. 192 359–366.

    Article  Google Scholar 

  • Davies G R, Stolz A J, Mahotkin G M, Nowell I L and Pearson D G 2006 Trace element and Sr–Pb–Nd–Hf isotope evidence for ancient fluid-dominated enrichment of the source of aldan shield lamproites; J. Petrol. 47 1119–1146.

    Article  Google Scholar 

  • De Stefano A, Lefebvre N and Kopylova M 2006 Enigmatic diamonds in Archean calc-alkaline lamprophyres of Wawa southern Ontario Canada; Contrib. Mineral. Petrol. 151 158–173.

    Article  Google Scholar 

  • Didenko A N, Efimov A S, Nelyubov P A, Sal’nikov A S, Starosel’ts V S, Shevchenko B F, Goroshko M V, Gur’yanov V A and Zamozhnyay N G 2013 Structure and evolution of the Earth’s crust in the region of junction of the central Asian fold belt and the Siberian platform: Skovorodino-tommot profile; Russian Geol. Geophys. 54 1236–1249.

    Article  Google Scholar 

  • Doroshkevich A G, Prokopyev I R, Izokh A E, Klem R, Ponomarchuk A V, Nikolaeva I V and Vladykin N V 2018 Isotopic and trace element geochemistry of the Seligdar magnesiocarbonatites (South Yakutia Russia): Insights regarding the mantle evolution beneath the Aldan–Stanovoy shield; J. Asian Earth Sci. 154 354–368.

    Article  Google Scholar 

  • Edgar A D and Mitchell R H 1997 Ultra high pressure–temperature melting experiments on a SiO2-rich lamproite from Smoky Butte Montana: Derivation of siliceous lamproite magmas from enriched sources deep in the continental mantle; J. Petrol. 38 457–477.

    Article  Google Scholar 

  • Ehrenberg S N 1982 Petrogenesis of garnet lherzolite and megacrystalline nodules from the Thumb Navajo volcanic field; J. Petrol. 23 507–547.

    Article  Google Scholar 

  • Ernst R E and Bell K 2010 Large igneous provinces (LIPs) and carbonatites; Mineral. Petrol. 98 55–76.

    Article  Google Scholar 

  • Evensen N M, Hamilton P J and Onions R K 1979 Rare-earth abundances in chondritic meteorites; Geochim. Cosmochim. Acta 42 1199–1212.

    Article  Google Scholar 

  • Foley S F, Barth M G and Jenner G A 2000 Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas; Geochim. Cosmochim. Acta 64 933–938.

    Article  Google Scholar 

  • Foley S F, Venturelli G, Green D H and Toscani L 1987 The ultrapotassic rocks: Characteristics classification and constraints for petrogenetic models; Earth Sci. Rev. 24 81–134.

    Article  Google Scholar 

  • Förster M W, Buhre S, Xu B, Prelević D, Mertz-Kraus R and Foley S F 2020 Two-stage origin of K-enrichment in ultrapotassic magmatism simulated by melting of experimentally metasomatized; Mantle Miner. 10 41.

    Google Scholar 

  • Franz L, Brey G P and Okrusch M 1996 Steady state geotherm thermal disturbances and tectonic development of the lower lithosphere underneath the Gibeon Kimberlite Province Namibia; Contrib. Mineral. Petrol. 126 181–198.

    Article  Google Scholar 

  • Gao M, Xu M, Zhang J and Foley S F 2019 Experimental interaction of granitic melt and peridotite at 15 GPa: Implications for the origin of post-collisional K-rich magmatism in continental subduction zones; Lithos 350–351 105241.

    Article  Google Scholar 

  • Giuliani A, Phillips D, Kamenetsky V S and Goemann K 2016 Constraints on kimberlite ascent mechanisms revealed by phlogopite compositions in kimberlites and mantle xenoliths; Lithos 240–243 189–220.

    Article  Google Scholar 

  • Gor’kovets V Y, Rudashevskii N S, Rudashevskii V N, Popov M G and Antonov A V 2013 Indicator minerals of diamond in the lamproitic diatreme, Kostomuksha region, Karelia; Dokl. Earth Sci. 450 475–478.

    Article  Google Scholar 

  • Green T H, Blundy J D, Adam J and Yaxley G M 2000 SIMS determination of trace element partition coefficients between garnet clinopyroxene and hydrous basaltic liquids at 2–7 5 GPa and 1080–1200°C; Lithos 53 165–187.

    Article  Google Scholar 

  • Griffin W L, Ryan C G, Kaminsky F V, O’Reilly S Y, Natapov L M, Win T T, Kinny P D and Jaques A L 1998 Kimberlite and lamproite diamond pipes AGSO; J. Austral. Geol. Geophys. 17 153–162.

    Google Scholar 

  • Griffin W L, Fisher N I, Friedman J H, O’Reilly S Y and Ryan C G 2002 Cr-pyrope garnets in the lithospheric mantle 2 Compositional populations and their distribution in time and space; Geochem. Geophys. Geosyst. 3 12.

    Article  Google Scholar 

  • Gudmundsson G and Wood B J 1995 Experimental tests of garnet peridotite oxygen barometry; Contrib. Mineral. Petrol. 119 56–67.

    Article  Google Scholar 

  • Hart S R and Dunn T 1993 Experimental cpx/melt partitioning of 24 trace elements; Contrib. Mineral. Petrol. 113 1–8.

    Article  Google Scholar 

  • Hearn B C 2004 The homestead kimberlite central Montana USA: Mineralogy xenocrysts and upper-mantle xenoliths; Lithos 77 473–491.

    Article  Google Scholar 

  • Ionov D A, Bénard A, Yu Plechov P and Shcherbakov V D 2013 Along-arc variations in lithospheric mantle compositions in Kamchatka Russia: First trace element data on mantle xenoliths from the Klyuchevskoy Group volcanoes; J. Volcanol. Geotherm. Res. 263 122–131.

    Article  Google Scholar 

  • Ivanic T J, Nebel O, Jourdan F, Faure K, Kirkland C L and Belousova E A 2015 Heterogeneously hydrated mantle beneath the late Archean Yilgarn Craton; Lithos 238 76–85.

    Article  Google Scholar 

  • Ivanov A V, Demonterova E I, Savatenkov V M, Perepelov A B, Ryabov V V and Shevko A Y 2018 Late triassic carnian lamproites from Noril’sk polar Siberia: Evidence for melting of the recycled Archean crust and the question of lamproite source for some placer diamond deposits of the Siberian Craton; Lithos 296–299 67–78.

    Article  Google Scholar 

  • Jahn B-M, Gruau G, Capdevila R, Cornichet J, Nemchin A A, Pidgeon A and Rudnik V A 1998 Archean crustal evolution of the aldan shield Siberia: Geochemical and isotopic constraints; Precamb. Res. 91 333–363.

    Article  Google Scholar 

  • Jaques A L, Lewis J D and Smith C B 1986 Kimberlites and lamproites of Western Australia; Geol. Surv. West. Aust. Bull. 132 268.

    Google Scholar 

  • Jenkins D M and Newton R C 1979 Experimental determination of the spinel peridotite to garnet peridotite inversion at 900°C and 1000°C in the system CaO–MgO–Al2O3–SiO2 and at 900°C with natural garnet and olivine; Contrib. Mineral. Petrol. 68 407–419.

    Article  Google Scholar 

  • Khomich V G, Boriskina N G and Santosh M 2015 Geodynamics of late mesozoic PGE Au and U mineralization in the Aldan shield North Asian craton; Ore Geol. Rev. 1 30–42.

    Article  Google Scholar 

  • King S D 2005 Archean cratons and mantle dynamics; Earth Planet Sci. Lett. 234 1–14.

    Article  Google Scholar 

  • Kochetkov A Y 2006 Mineral potential of alkaline massifs of the Aldan Shield: The Ryabinovoe copper–gold–porphyry deposit; Tikhookeanskaya Geologiya 2 62–73.

    Google Scholar 

  • Kononova V A, Pervov V A, Bogatikov O A, Mus-Shumacher U and Keller I 1995 Mesozoic potassium-rich magmatism of the central aldan: Geodynamics and genesis; Geotectonics 1 35–45.

    Google Scholar 

  • Kopylova M G, Russell J K and Cookenboo H 1999 Petrology of peridotite and pyroxenite xenoliths from the Jericho kimberlite: Implications for the thermal state of the mantle beneath the Slave craton northern Canada; J. Petrol. 40 79–104.

    Article  Google Scholar 

  • Kornilova V P 1997 Petrography and mineralogy of the calc-alkaline lamprophyres and eruptive breccias from Chompolo area fatherland (Russian); Geology 9 6–9.

    Google Scholar 

  • Kostrovitsky S and Garanin V 1992 High chromium titanates in pyropes dikes Aldan (Yakutia); Zapiski RMO 121 67–72.

    Google Scholar 

  • Kotov A B, Sal’nikova E B, Glebovitsky V A, Zagornaya N Y, Kovach V P, Larin A M, Velikoslavinskii S D and Zagornaya N Y 2006 Sm–Nd isotopic provinces of the Aldan Shield; Doklady Earth Sci. 410 1066–1069.

    Article  Google Scholar 

  • Kovalenko V I, Yarmolyuk V V, Kovach V P, Kotov A B, Kozakov I K, Salnikov E B and Larin A M 2004 Isotope provinces mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: Geological and isotopic evidence; J. Asian Earth Sci. 23 605–627.

    Article  Google Scholar 

  • Lavrent’ev Y G, Korolyuk V, Usova L and Nigmatulina E 2015 Electron probe microanalysis of rock-forming minerals with a JXA-8100 electron probe microanalyzer; Russian Geol. Geophys. 56 1428–1436.

    Article  Google Scholar 

  • Leake B E, Woolley A R, Arps C E S and Birch W D 1997 Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international association commission on new minerals and mineral names; Am. Mineral. 82 1019–1037.

    Google Scholar 

  • Lefebvre N, Kopylova M and Kivib K 2005 Archean calc-alkaline lamprophyres of Wawa Ontario Canada: Unconventional diamondiferous volcaniclastic rocks; Precamb. Res. 138(2005) 57–87.

    Article  Google Scholar 

  • Lee C-T and Rudnick R L 2000 Compositionally stratified cratonic lithosphere petrology and geochemistry of peridotite xenoliths from the Labait Volcano Tanzania; Proceedings of the VII International Kimberlite Conference, The P H Nixon volume, Red Roof Design, Cape Town, South Africa, pp. 503–521.

  • Leontev V I, Skublov S G, Shatova N V and Berezin A V 2020 Zircon U–Pb geochronology recorded late cretaceous fluid activation in the central aldan gold ore district aldan shield, Russia: First data; J. Earth Sci. 31 481–491.

    Article  Google Scholar 

  • Locock L J 2014 An excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations; Comput. Geosci. 62 1–11.

    Article  Google Scholar 

  • McGregor I D 1974 The system MgO–Al2O3–SiO2: Solubility of Al2O3 in enstatite for spinel and garnet–spinel compositions; Am. Mineral. 59 110–119.

    Google Scholar 

  • Mahotkin I L, Arakelyan M M and Vladykin N V 1989 Age of the Aldan lamproite province; Doklady Akademii Nauk SSSR 306 703–707.

    Google Scholar 

  • Manning C E 2004 The chemistry of subduction-zone fluids; Earth Planet. Sci. Lett. 223 1–16.

    Article  Google Scholar 

  • McCammon C A, Griffin W L, Shee S R and O’Neill H S C 2001 Oxidation during metasomatism in ultramafic xenoliths from the Wesselton kimberlite South Africa: Implications for the survival of diamond; Contrib. Mineral. Petrol. 141 287–296.

    Article  Google Scholar 

  • McDonough W F and Sun S-S 1995 The composition of the Earth; Chem. Geol. 120 223–253.

    Article  Google Scholar 

  • Mekhonoshin A S, Ernst R, Soderlund U, Hamilton M A, Kolotilina T B, Izokh A E, Polyakov G V and Tolstykh N D 2016 Relationship between platinum-bearing ultramafic–mafic intrusions and large igneous provinces (exemplified by the Siberian craton); Russian Geol. Geophys. 57 822–833.

    Article  Google Scholar 

  • Mirnejad H and Bell K 2006 Origin and source evolution of the Leucite Hills lamproites: Evidence from Sr–Nd–Pb–O isotopic compositions; J. Petrol. 47 2463–2489.

    Article  Google Scholar 

  • Mitchell R H, Smith C B and Vladykin N V 1994 Isotopic composition of strontium and neodymium in potassic rocks of the Little Murun complex Aldan Shield Siberia; Lithos 32 243–248.

    Article  Google Scholar 

  • Mitchell R H and Bergman S C 1991 Petrology of Lamproites; Plenum, New York, 447p.

    Book  Google Scholar 

  • Nikiforov A V and Yarmolyuk V V 2019 Late mesozoic carbonatite provinces in Central Asia: Their compositions sources and genetic settings; Gondwana Res. 69 56–72.

    Article  Google Scholar 

  • Nikolenko E I, Lobov K V, Agashev A M, Tychkov N S, Chervyakovskaya M V, Sharygin I S and Nikolenko A M 2020 40Ar/39Ar geochronology and new mineralogical and geochemical data from lamprophyres of Chompolo Field (South Yakutia Russia); Minerals 10 886.

    Article  Google Scholar 

  • Nikolenko E I, Sharygin I S, Alifirova T A, Korsakov A V, Zelenovskiy P S and Shur V Y 2017 Graphite-bearing mineral assemblages in the mantle beneath Central Aldan superterrane of North Asian Craton: Combined confocal micro-Raman and electron microprobe characterization; J. Raman Spectrosc. 48 1597–1605.

    Article  Google Scholar 

  • Nikolenko E I, Sharygin I S, Rezvukhin D I, Malkovets V G, Tychkov N S and Pokhilenko N P 2021 Sulfide-bearing polymineralic inclusions in mantle-derived garnets from lamprophyres of the Chompolo field (Central Aldan Siberian craton); Doklady Earth Sci. 497 139–144.

    Article  Google Scholar 

  • Nimis P and Taylor W 2000 Single clinopyroxene thermobarometry for garnet peridotites. Part I: Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer; Contrib. Mineral. Petrol. 139 541–554.

    Article  Google Scholar 

  • Nixon P H and Boyd F R 1973 Petrogenesis of the granular and sheared ultrabasic nodule suite in kimberlite; In: Lesotho Kimberlites Cape and Transvaal Cape Town (ed.) Nixon P H, pp. 48–56.

  • O’Neill H S C and Wood B J 1979 An experimental study of Fe–Mg-partitioning between garnet and olivine and its calibration as a geothermometer; Contrib. Mineral. Petrol. 70 59–70.

    Article  Google Scholar 

  • O’Neill H S C and Wall V J 1987 The olivine orthopyroxene–spinel oxygen geobarometer the nickel precipitation curve and the oxygen fugacity of the Earth’s upper mantle; J. Petrol. 8 1169–1191.

    Article  Google Scholar 

  • O’Reilly S Y and Griffin W L 2010 The continental lithosphere–asthenosphere boundary: Can we sample it?; Lithos 120 1–13.

    Article  Google Scholar 

  • O’Reilly S Y, Griffin W L, Diomany P and Morgan P 2001 Are lithospehers forever?; GSA Today 11 4–9.

    Google Scholar 

  • Ovchinnikov Y I 1990 Xenoliths from Obnazhennaya kimberlite pipe and alkali basalts from Minusa depression; PhD dissertation thesis, United Institute of Geology Geophysics Mineralogy Novosibirsk, 225p.

  • Pandey A, Chalapathi Rao N V, Chakrabarti R, Pandit R, Pankaj P, Kumar A and Sahoo S 2017 Petrogenesis of a mesoproterozoic shoshonitic lamprophyre dyke from the Wajrakarur kimberlite field eastern Dharwar craton southern India: Geochemical and Sr–Nd isotopic evidence for a modified sub-continental lithospheric mantle source; Lithos 292–293 218–233.

    Article  Google Scholar 

  • Panina L I, Nikolaeva A T and Yu Rokosova E 2011 Crystallization conditions of the alkaline–basic dike from the Yllymakh Massif Central Aldan: Evidence from melt inclusion data in minerals; Geochem. Int. 49 120–138.

    Article  Google Scholar 

  • Panina L I and Vladykin N V 1994 Lamproitic rocks of the Murun Massif and their genesis; Russian Geol. Geophys. 35 100–113.

    Google Scholar 

  • Pearson D G 1999 The age of continental roots; Lithos 48 171–194.

    Article  Google Scholar 

  • Pearson D G, Snyder G A, Shirey S B, Taylor L A, Carlson R W and Sobolev N V 2005 Archaean Re–Os age for Siberian eclogites and constraints on Archaean tectonics; Nature 374 711–713.

    Article  Google Scholar 

  • Peltonen P and Brügmann G 2006 Origin of layered continental mantle (Karelian craton Finland): Geochemical and Re–Os isotope constraints; Lithos 89 405–423.

    Article  Google Scholar 

  • Pernet-Fisher J F, Howarth G H, Pearson D G, Woodland S, Barry P H, Pokhilenko N P, Pokhilenko L N, Agashev A M and Taylor L A 2015 Plume impingement on the Siberian SCLM: Evidence from Re–Os isotope systematics; Lithos 218–219 141–154.

    Article  Google Scholar 

  • Pokhilenko N P, Sobolev N V, Kuligin S S and Shimizu N 1999 Peculiarities of distribution of pyroxenite paragenesis garnets in Yakutian Kimberlites and some aspects of the evolution of the Siberian Craton lithospheric mantle; In: Proceedings of the VII International Kimberlite Conference, P H Nixon volume 690–707.

  • Pokhilenko N P, Pearson D G, Boyd F R and Sobolev N V 1991 Megacrystalline dunites: Sources of Siberian diamonds; Carnegie Inst Wash Yearb. 90 11–18.

    Google Scholar 

  • Popov N V and Smelov A P 1996 The Aldan shield metamorphic assemblages; Russian Geol. Geophys. 37 148–161.

    Google Scholar 

  • Prelević D, Stracke A, Foley S F, Romer R L and Conticelli S 2010 Hf isotope compositions of Mediterranean lamproites: Mixing of melts from asthenosphere and crustally contaminated mantle lithosphere; Lithos 119 297–312.

    Article  Google Scholar 

  • Prokopyev I R, Doroshkevich A G, Ponomarchuk A V, Redina A A, Yegitova I V, Ponomarev J D, Sergeev S A, Kravchenko A A, Ivanov A I, Sokolov E P, Kardash E A and Minakov A V 2019 U–Pb SIMS and Ar–Ar geochronology petrography mineralogy and gold mineralization of the late Mesozoic Amga alkaline rocks Aldan shield Russia; Ore Geol. Rev. 109 520–534.

    Article  Google Scholar 

  • Puchtel I S 2004 3.0 Ga Olondo greenstone belt in the Aldan shield E Siberia; Develop Precamb. Geol. 13 405–423.

    Article  Google Scholar 

  • Rock N 1984 Nature and origin of calc-alkaline lamprophyres: Minettes vogesites kersantites and spessartites; Trans R. Soc. Edinb. Earth Environ. Sci. 74 193–227.

    Article  Google Scholar 

  • Rock N M S 1991 Lamprophyres; Blackie and Sons Ltd, Glasgow.

    Book  Google Scholar 

  • Rokosova E Y, Panina L I, Vasil’ev Y R and Lesnov F P 2016 Conditions of crystallization of olivine shonkinites in the Inagli massif Central Aldan; Russian Geol. Geophys. 57/9 1298–1311.

    Article  Google Scholar 

  • Rollinson H R 1993 Using Geochemical Data: Evaluation Presentation Interpretation; Longman Harlow, England, pp. 1–290.

    Google Scholar 

  • Rudnick R L, McDonough W F and O’Connell R J 1998 Thermal structure thickness and composition of continental lithosphere; Chem. Geol. 145 395–411.

    Article  Google Scholar 

  • Ryan C G, Griffin W L and Pearson N 1996 Garnet geotherms: A technique for derivation of P–T data from Cr–pyrope garnets; J. Geophys. Res. 101 5611–5625.

    Article  Google Scholar 

  • Schmidberger S S and Francis D 2001 Constraints on the trace element composition of the Archean mantle root beneath Somerset Island Arctic Canada; J. Petrol. 42 1095–1117.

    Article  Google Scholar 

  • Shatova N V, Skublov A E, Melnik S, Shatov V V, Molchanov A V, Terehov A V and Sergeev S A 2017 Geochronology of alkaline magmatic rocks and metasomatites of the Ryabinovy stock South Yakutia based on zircon isotopic and geochemical U–Pb REE investigations; Reg. Geol. 69 33–48.

    Google Scholar 

  • Shilina G N and Zeitlin S M 1959 About the first finding of the kimberlites on Aldan shield; Soviet Geol. 10 132–136.

    Google Scholar 

  • Smelov A P, Nikitin V M, Biryul’kin G V and Popov N V 2001 Metallogenic units of North-Asian craton; In: Tectonics geodynamics and metallogeny of the Sakha Republic (Yakutia) (eds) Parfenov L M and Kuzmin M I, MAIK Nauka Interperiodica Moscow, pp. 301–333.

  • Smelov A P, Shatsky V S, Ragozin A L, Reutskii V N and Molotkova A E 2012 Diamondiferous Archean rocks of the Olondo greenstone belt (western Aldan–Stanovoy shield); Russian Geol. Geophys. 53 1012–1022.

    Article  Google Scholar 

  • Smelov A P, Yan H, Timofeev V F, Prokopiev A V and Nokleberg W J 2010 Archean through Mesoproterozoic metallogenesis and tectonics of northeast Asia; In: Metallogenesis and Tectonics of Northeast Asia; US Geological Survey: Reston, VA, USA, chapter 4.

  • Smith C B, Pearson D G, Bulanova G P, Beard A D, Carlson R W, Wittig N, Sims K, Chimuka L and Muchemwa E 2009 Extremely depleted lithospheric mantle and diamonds beneath the southern Zimbabwe Craton; Lithos 112(S2) 1120–1132.

    Article  Google Scholar 

  • Sobolev N V 1977 Deep-seated inclusions in kimberlites and the problem of the composition of the mantle; Am. Geophys. Union, Washington DC, 279p.

  • Solov’eva L V, Kalashnikova T V, Kostrovitsky S I, Ivanov A V, Matsuk S S and Suvorova L F 2015 Metasomatic and magmatic processes in the mantle lithosphere of the Birekte terrain of the Siberian craton and their effect on the lithosphere evolution; Geodynam. Tectonophys. 6 311–344.

    Article  Google Scholar 

  • Stachel T, Banas A, Muehlenbachs K, Kurszlaukis S and Walker E C 2006 Archean diamonds from Wawa (Canada): Samples from deep cratonic roots predating cratonization of the Superior Province; Contrib. Mineral. Petrol. 151 737–750.

    Article  Google Scholar 

  • Stagno V, Ojwang D O, McCammon C A and Frost D J 2013 The oxidation state of the mantle and the extraction of carbon from Earth’s interior; Nature 493 84–88.

    Article  Google Scholar 

  • Stoppa F, Schiazza M, Rosatelli G, Castorina F, Sharyg V V, Ambrosio F A and Vicentini N 2019 Italian carbonatite system: From mantle to ore-deposit; Ore Geol. Rev. 114 103041.

    Article  Google Scholar 

  • Sun C and Liang Y 2015 A REE-in-garnet–clinopyroxene thermobarometer for eclogites granulites and garnet peridotites; Chem. Geol. 393–394 79–92.

    Article  Google Scholar 

  • Sun S, Tappe S, Kostrovitsky S I, Liu C-Z, Skuzovatov S Y and Wu F-Y 2018 Mantle sources of kimberlites through time: A U-Pb and Lu–Hf isotope study of zircon megacrysts from the Siberian diamond fields; Chem. Geol. 479 228–240.

    Article  Google Scholar 

  • Talukdar D, Pandey A, Chalapathi Rao N V, Kumar A, Pandit D, Belyatsky B and Lehmann B 2018 Petrology and geochemistry of the mesoproterozoic vattikod lamproites eastern dharwar craton southern India: Evidence for multiple enrichment of sub-continental lithospheric mantle and links with amalgamation and break-up of the Columbia supercontinent; Contrib. Mineral. Petrol. 173 67.

    Article  Google Scholar 

  • Tappe S, Foley S F, Jenner G A and Kjarsgaard B A 2005 Integrating ultramafic lamprophyres into the IUGS classification of igneous rocks: Rationale and implications; J. Petrol. 46 1893–1900.

    Article  Google Scholar 

  • Tappe S, Foley S F, Kjarsgaard B A, Romer R L, Heaman L M, Stracke A and Jenner G A 2008 Between carbonatite and lamproite – diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes; Geochim. Cosmochim. Acta 72 3258–3286.

    Article  Google Scholar 

  • Tappe S, Romer R L, Stracke A, Steenfelt A, Smart K A, Muehlenbachs K and Torsvik T H 2017 Sources and mobility of carbonate melts beneath cratons with implications for deep carbon cycling metasomatism and rift initiation; Earth Planet. Sci. Lett. 466 152–167.

    Article  Google Scholar 

  • Taylor W R, Kammerman M and Hamilton R 1998 New thermometer and oxygen fugacity sensor calibrations for ilmenite and chromium spinel-bearing peridotitic assemblages; 7th International Kimberlite Conference Extended abstracts, Cape Town, pp. 891–901.

  • Taylor L A, Gregory A, Keller S R, Remley D A, Anand M, Wiesli R, Valley J and Sobolev N V 2003 Petrogenesis of group A eclogites and websterites: Evidence from the Obnazhennaya kimberlite Yakutia; Contrib. Mineral. Petrol. 103 424–443.

    Article  Google Scholar 

  • Travin A V, Yudin D S, Vladimirov A G, Khromykh S V, Volkova N I, Mekhonoshin A S and Kolotilina T B 2009 Thermochronology of the Chernorud granulite zone Ol’khon Region Western Baikal area; Geochem. Int. 47 1107–1124.

    Article  Google Scholar 

  • Tommasini S R, Avanzinelli R and Conticelli S 2011 The Th/La and Sm/La conundrum of the Tethyan realm lamproites; Earth Planet. Sci. Lett. 301 469–478.

    Article  Google Scholar 

  • Tychkov N S, Yudin D S, Nikolenko E I, Malygina E V and Sobolev N V 2018 Mesozoic lithospheric mantle of the northeastern Siberian craton (evidence from inclusions in kimberlite); Russian Geol. Geophys. 59 1254–1270.

    Article  Google Scholar 

  • Van Achterbergh E, Griffin W L, Shee S R, Wayatyt B A and Sharma A L 1998 Natural trace element distribution coefficients for garnet clinopyroxene and orthopyroxene: Variations with temperature and pressure; Extended Abstracts 7IKC, Cape Town, pp. 934– 936.

  • Van Acken D, Luguet A, Pearson D G, Nowell G M, Fonseca R O C, Nagel T J and Schulze T 2017 Mesoarchean melting and Neoarchean to Paleoproterozoic metasomatism during the formation of the cratonic mantle keel beneath West Greenland; Geochim. Cosmochim. Acta 203 37–53.

    Article  Google Scholar 

  • Vavilov M A, Bazarova Y T, Podgornykh N M, Krivoputskaya L M and Kuznetsova I K 1986 Characteristics and formation conditions of potassic alkaline rocks of the Loman Massif; Russian Geol. Geophys. 27 40–46.

    Google Scholar 

  • Vladykin N 1985 First finding of lamproites in the USSR; Doklady Earth Sci. 718–722.

  • Vladykin N V 1996 Bilibinsky massif-stratified highly differentiated complex K-ultrabasic-alkaline rocks; Doklady Earth Sci. 349(6) 972–975.

    Google Scholar 

  • Vladykin N V 1997 Geochemistry and genesis of lamproites of the Aldan Shield; Russian Geol. Geophys. 38 128–141.

    Google Scholar 

  • Vladykin N V 2009 Potassium alkaline lamproite–carbonatite complexes: Petrology genesis and ore reserves; Russian Geol. Geophys. 50(12) 1119–1128.

    Article  Google Scholar 

  • Vladykin N V 2016 Genesis and crystallization of ultramafic alkaline carbonatite magmas of Siberia: Ore potential mantle sources and relationship with plume activity; Russian Geol. Geophys. 57 698–712.

    Article  Google Scholar 

  • Vladykin N, Ashchepkov I, Sotnikova I and Mevedev N 2021 Lamprophyres of Kayla pipe and their mantle xenocrysts, SE Yakutia. EGU General Assembly 2021, Abstract 3726, https://doi.org/10.5194/egusphere-egu21-3746.

  • Vorobyov K A, Kurbatov A V and Karelin V V 2000 State geological map of the Russian Federation scale 1:200000 Explanatory note, Aldan Series sheet O-51-third, 2nd edition, St Petersburg.

  • Wagner C, Deloule E and Mokhtari A 1996 Richterite-bearing peridotites and MARID-type inclusions in lavas from North Eastern Morocco: Mineralogy and D/H isotopic studies; Contrib. Mineral. Petrol. 124 406–421.

    Article  Google Scholar 

  • Wang C L, Cascio L, Liang Y and Xu W 2020 An experimental study of peridotite dissolution in eclogite-derived melts: Implications for styles of melt-rock interaction in lithospheric mantle beneath the North China Craton; Geochim. Cosmochim. Acta 278 157–176.

    Article  Google Scholar 

  • Wang Z and Kusky M T 2019 The importance of a weak mid-lithospheric layer on the evolution of the cratonic lithosphere; Earth Sci. Rev. 190 557–569.

    Article  Google Scholar 

  • Xi Q-X, Chen R-X, Gao X-Y and Zheng Y-F 2011 Partial melting fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision; Earth Sci. Rev. 107 342–374.

    Article  Google Scholar 

  • Yarmolyuk V V, Nikiforov A V, Kozlovsky A M and Kudryashova E 2019 Late Mesozoic east asian magmatic province: Structure magmatic signature formation conditions; Geotectonics 53(4) 500–516.

    Article  Google Scholar 

  • Zhao Z, Mo X, Dilek Y, Niu Y, DePaolo D, Robinson P, Zhu D, Sun X, Dong G, Zhou S, Luo Z and Hou Z 2009 Geochemical and Sr–Nd–Pb–O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet; Lithos 113 190–212.

    Article  Google Scholar 

  • Zheng Y-F, Xu Z, Chen L, Dai L-Q and Zhao Z-F 2020 Chemical geodynamics of mafic magmatism above subduction zones; J. Asian Earth Sci. 194 104–185.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Ministry of Science and Higher Education of the Russian Federation RBRF grants 19-05-00788a, 18-05-00073a, 16-05-00860a, Government tasks for Institute of Geochemistry SB RAS, Institute of Geology and Mineralogy SB RAS, and the governmental assignment in terms of Project IX.129.1.4. We are grateful to the anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Contributions

AIV designed the study, performed the microprobe analyses, interpreted the data, and prepared the manuscript. VNV sampled, prepared KIM concentrates, studied and interpreted geology. MNS made LA-ICP-MS analyses. NEI provided field work, made part of EPMA analyses. YDS made 40Ar/39Ar dating. DH corrected and edited the text.

Corresponding author

Correspondence to Igor V Ashchepkov.

Additional information

Communicated by N V Chalapathi Rao

Supplementary material pertaining to this article is available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 598 kb)

Supplementary file2 (XLS 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashchepkov, I.V., Vladykin, N.V., Medvedev, N.S. et al. Reconstructions of lithospheric mantle beneath Aldan shield based on deep-seated xenocrysts from lamprophyres of Chompolo field, Russia. J Earth Syst Sci 130, 200 (2021). https://doi.org/10.1007/s12040-021-01694-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-021-01694-z

Keywords

Navigation