Skip to main content
Log in

An estimation of probable seismic hazard in the active deformation front of the Himalayan arc

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Research highlights

  • The earthquake catalogue of Himalaya between 1225 and 2017 is compiled.

  • The active tectonic front of the Himalaya is subdivided into 14 zones (1–14) between MFT and MCT.

  • The moment ratio < 1 in 10 zones [1 (Kashmir), 3 (Kangra), 5 (Almora), 6 (Central-gap1), 8 (Pokhra–Kathmandu), 9 (Everest), 11 (W Bhutan), 12 (E Bhutan), 13 (Arunachal) and 14 (Eastern Syntaxis)], show good agreement between geodetic and seismic moment rates, and are vulnerable for large earthquake (Mw 8.15–8.95) in distant future.

  • Presently, zones 2 (Kishtwar), 4 (Nahan), 7 (Central-Gap 2) and 10 (Sikkim) are vulnerable as they show moderate-low b-values, high moment-ratio (>1) and long seismic hiatus. Moreover, zones 2, 4, 10, 12 and 13 have un-ruptured patches of Main Himalayan Thrust (MHT) and have capacity to spawn Mw 6.75–7.95 earthquake any point of time.

  • The rupture generated in these zones will transgress the zone boundaries and terminate in the sub-surface Precambrian ridge systems continuing from Peninsular India below Himalaya.

Abstract

In this study, the strain rate (SR) in grid-nodes in and around Himalaya that was computed from 1252 GPS station data, is also used. The earthquake catalogue of Himalaya between 1225 and 2017 is compiled. The active tectonic front of the Himalaya is subdivided into 14 zones between MFT and MCT, where MHT is locked. For each zone, magnitude-completeness (Mc), ‘a’ and ‘b’ values, geodetic moment rate (Mgd), seismic moment rate (Msm), moment ratio (Mgd/Msm) are calculated. It is observed that the moment ratio is <1 in zone 1 (Kashmir), 3 (Kangra), 5 (Almora), 6 (Central-gap 1), 8 (Pokhra–Kathmandu), 9 (Everest), 11 (W Bhutan), 12 (E Bhutan), 13 (Arunachal) and 14 (Eastern Syntaxis). These zones show good agreement between geodetic and seismic moment rates, and are vulnerable to large earthquakes (Mw 8.15–8.95) in the distant future. Presently, zone 2 (Kishtwar), 4 (Nahan), 7 (Central-Gap 2), and 10 (Sikkim) are vulnerable as they show moderate-low b-values, high moment ratio (>1), and long seismic hiatus for large earthquakes. Moreover, zones 2, 4, 10, 12, and 13 have un-ruptured patches of MHT and have the capacity to spawn Mw 6.75–7.95 earthquake at any point of time. The rupture generated in these zones will transgress the zone boundaries and terminate in the sub-surface Precambrian ridge systems continuing from Peninsular India below Himalaya.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Ader T, Avouac J-P and Liu Zeng J et al. 2012 Convergence rate across the Nepal Himalaya and interseismic coupling on the main Himalayan thrust: Implications for seismic hazard; J. Geophys. Res. 17 B044403.

    Google Scholar 

  • Aki K 1965 Maximum likelihood estimate of b in the formula log N = ab M and its confidence limits; Bull. Earthq. Res. Inst., Tokyo University 43 237–239.

    Google Scholar 

  • Ambraseys N and Jackson D 2003 A note on early earthquakes in northern India and southern Tibet; Curr. Sci. 84 570–582.

    Google Scholar 

  • Amorese D, Grasso J-R and Rydelek P A 2010 On varying b-values with depth: Results from computer-intensive tests for Southern California; Geophys. J. Int. 180 347–360.

    Article  Google Scholar 

  • Avouac J-P, Meng L, Wei S, Wang T and Ampuero J-P 2015 Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake; Nat. Geosci. 8 708–711.

    Article  Google Scholar 

  • Banerjee P, Burgmann R, Nagarajan B and Apel E 2008 Intraplate deformation of the Indian subcontinent; Geophys. Res. Lett. 35 L18301, https://doi.org/10.1029/2008GL035468.

    Article  Google Scholar 

  • Bettinelli P, Avouac J P, Flouzat M, Jouanne F, Bollinger L, Willis P and Chitrakar G R 2006 Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS measurements; J. Geodesy 80 567–589.

    Article  Google Scholar 

  • Bernard M, Shen-Tu B, Holt W E and Davis D 2000 Kinematics of active deformation in the Sulaiman Lobe and Range, Pakistan; J. Geophys. Res. 105 13,253–13,279.

    Article  Google Scholar 

  • Bilham R, Larson K and Freymuller J 1997 GPS measurements of present-day convergence across the Nepal Himalaya; Nature 386 61–64.

    Article  Google Scholar 

  • Bilham R and Ambraseys N N 2005 Apparent Himalayan slip deficit from the summation of seismic moments for Himalayan earthquakes, 1500–2000; Curr. Sci. 881 1658–1663.

    Google Scholar 

  • Bilham R and Wallace K 2005 Future Mw > 8 earthquakes in the Himalaya: Implication from the 26 Dec 2004 Mw = 9.0 earthquake on India’s Eastern Plate Margin; Geol. Surv. India, Spec. Publ. 85 1–14.

    Google Scholar 

  • Bilham R, Mencin D, Bendick R and Bürgmann R 2017 Implications for elastic energy storage in the Himalaya from the Gorkha 2015 earthquake and other incomplete ruptures of the Main Himalayan Thrust; Quat. Int., https://doi.org/10.1016/j.quaint.2016.09.055.

  • Bilham R 2019 Himalayan earthquakes: A review of historical seismicity and early 21st century slip potential; In: Himalayan tectonics: A modern synthesis (eds) Treloar P J and Searle M P, Geol. Soc. London, Spec. Publ. 483, https://doi.org/10.1144/SP483.16.

  • Burg J P, Nievergelt P, Oberli F, Seward D, Davy P, Maurin J C, Diao Z and Meier M 1998 The Namche Barwa syntaxis: Evidence for exhumation related to compressional crustal folding; J. Asian Earth Sci. 16(2–3) 239–252.

    Article  Google Scholar 

  • Burgess W P, Yin A, Dubey C S, Shen Z-K and Kelty T K 2012 Holocene shortening across the Main Frontal Thrust zone in the eastern Himalaya; Earth Planet. Sci. Lett. 357–358 152–167.

    Article  Google Scholar 

  • Burman P et al. 2017 Crustal deformation rates in Assam Valley, Shillong Plateau, Eastern Himalaya and Indo-Burmese region from 11 years (2002–2013) of GPS measurements; Int. J. Earth Sci. (Geol. Rundsch) 106 2025–2035.

    Article  Google Scholar 

  • Calais E, Han J Y, DeMets C and Nocquet J M 2006 Deformation of the North American plate interior from a decade of continuous GPS measurements; J. Geophys. Res. 111 B06402, https://doi.org/10.1029/2005jb004253.

    Article  Google Scholar 

  • Chan L S and Chandler A M 2001 Spatial bias in b-value of the frequency magnitude relation for the Hong Kong region; J. Asian Earth Sci. 20 73–81.

    Article  Google Scholar 

  • Chousianitis K, Ganas A and Evangelidis C P 2015 Strain and rotation rate patterns of mainland Greece from continuous GPS data and comparison between seismic and geodetic moment release; J. Geophys. Res. Sol. Earth 120 3909–3931, https://doi.org/10.1002/2014jb011762.

    Article  Google Scholar 

  • D’Agostino N 2014 Complete seismic release of tectonic strain and earthquake recurrence in the Apennines (Italy); Geophys. Res. Lett. 41 1155–1162, https://doi.org/10.1002/2014gl059230.

    Article  Google Scholar 

  • Diehl T, Singer J, Hetényi G, Grujic D, Clinton J, Giardini D, Kissling E and Gansser Working Group 2017 Seismotectonics of Bhutan: Evidence for segmentation of the Eastern Himalayas and link to foreland deformation; Earth Planet. Sci. Lett. 147 54–64.

  • Ding L, Zhong D, Yin A, Kapp P and Harrison T M 2001 Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa); Earth Planet. Sci. Lett. 192 423–438.

    Article  Google Scholar 

  • Feldl N and Bilham R 2006 Great Himalayan earthquakes and the Tibetan plateau; Nature 444 165–170.

    Article  Google Scholar 

  • Finnegan N J, Hallet B, Montgomery D R, Zeitler P K, Stone J O, Anders A M and Yuping L 2008 Coupling of rock uplift and river incision in the Namcha–Barwa–Gyala Peri massif, Tibet; GSA Bull. 120 142–155.

    Article  Google Scholar 

  • Gansser A 1964 Geology of Himalayas; Wiley Interscience, London, 308p.

    Google Scholar 

  • Gan W, Zhang P and Shen Z K 2007 Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements; J. Geophys. Res. 112 B08416, https://doi.org/10.1029/2005jb004120.

    Article  Google Scholar 

  • Godin L and Harris L B 2014 Tracking basement cross-strike discontinuities in the Indian crust beneath the Himalayan orogen using gravity data – relationship to upper crustal faults; Geophys. J. Int. 198 198–215, https://doi.org/10.1093/gji/ggu131.

    Article  Google Scholar 

  • Godin L, La Roche R S, Waffle L and Harris L B 2018 Influence of inherited Indian basement faults on the evolution of the Himalayan Orogen; Geol. Soc. London, Spec. Publ. 481 251–276, https://doi.org/10.1144/SP481.4.

    Article  Google Scholar 

  • Gupta T D, Riguzzi F, Dasgupta S, Mukhopadhyay B, Roy S and Sharma S 2015 Kinematics and strain rates of the Eastern Himalayan Syntaxis from new GPS campaigns in northeast India; Tectonophys. 655 15–26.

    Article  Google Scholar 

  • Gupta H K and Gahalaut V K 2014 Seismotectonics and large earthquake generation in the Himalayan region; Gondwana Res. 25 204–213.

    Article  Google Scholar 

  • Gupta H K and Gahalaut V K 2015 Can an earthquake of Mw ~9 occur in the Himalayan region; Geol. Soc. London, Spec. Publ. 412, http://doi.org/10.1144/SP412.10.

  • Gutenberg B and Richter C 1954 Seismicity of the Earth and Associated Phenomena; 2nd edn, 133p.

  • Hazarika D, Kumar N and Yadav D K 2013 Crustal thickness and Poisson’s ratio variations across the northwest Himalaya and eastern Ladakh; Acta Geophys. 61(4) 905–922.

    Article  Google Scholar 

  • Hajra S, Hazarika D, Bankhwal M, Kundu A and Kumar N 2019 Average crustal thickness and Poisson’s ratio beneath the Kali River Valley, Kumaon Himalaya; J. Asian Earth Sci. 173 176–188.

    Article  Google Scholar 

  • Jackson D 2000 The great Himalayan earthquake of 1505: Rupture of the Central Himalayan Gap; In: Tibet, Past and Present: Tibetan Studies 1. PIATS 2000. Tibetan Studies: Proceedings of the Ninth Seminar of the International Association for Tibetan Studies, Leiden 2000 (eds.) Blezer H and Zadoks A., Brill. Boston, MA, pp. 147–153.

  • Jade S, Bhatt B C, Yang Z, Bentick R, Gaur V K, Molnar P, Annand M B and Kumar D 2004 GPS measurements from the Ladakh Himalaya, India: Preliminary tests of plate-like or continuous deformation in Tibet; Geol. Soc. Am. 116 1385–1391, https://doi.org/10.1130/b25357.1.

    Article  Google Scholar 

  • Jade S et al. 2007 Estimates of interseismic deformation in northeast India from GPS measurements; Earth Planet. Sci. Lett. 263 221–234, https://doi.org/10.1016/j.epsl.2007.08.031.

    Article  Google Scholar 

  • Jade S, Shrungeshwara T S, Kumar K, Choudhury P, Dumka R K and Bhu H 2017 India plate angular velocity and contemporary deformation rates from continuous GPS measurements from 1996 to 2015; Sci. Rep. 7 11439, https://doi.org/10.1038/s41598-017-11697-w.

    Article  Google Scholar 

  • Jenny S, Goes S, Giardini D and Kahle H G 2004 Earthquake recurrence parameters from seismic and geodetic strain rates in the eastern Mediterranean; Geophys. J. Int. 157 1331–1347.

    Article  Google Scholar 

  • Jouanne F, Mugnier J L, Gamond J F, Le Fort P, Pandey M R, Bollinger L, Flouzat M and Avouac J P 2004 Current shortening across the Himalayas of Nepal; Geophys. J. Int. 157 1–14, https://doi.org/10.1111/j.1365-246x.2004.02180.x.

    Article  Google Scholar 

  • Kanamori H 1977 The energy released in great earthquakes; J. Geophys. Res. 82 1981–1987.

    Google Scholar 

  • Kafka A L and Walcott J R 1998 How well does the spatial distribution of smaller earthquakes forecast the locations of larger earthquakes in the northeastern United States; Seismol. Res. Lett. 69 428–440.

    Article  Google Scholar 

  • Koons P O, Zeitler P K, Chamberlain C P, Craw D and Meltzer A S 2002 Mechanical links between erosion and metamorphism in Nanga Parbat, Pakistan Himalaya; Am. J. Sci. 302 749–773.

    Article  Google Scholar 

  • Kostrov V V 1974 Seismic moment and energy of earthquakes, and seismic flow of rocks; Izv. Acad. Sci. USSR Phys. Solid Earth 1 23–40.

    Google Scholar 

  • Koulakov G, Maksotova S, Mukhopadhyay J, Raoof J, Kayal J R, Jakovlev A and Vasilevsky A 2015 Variations of the crustal thickness in Nepal Himalayas based on tomographic inversion of regional earthquake data; Solid Earth 6 207–216, https://doi.org/10.5194/se-6-207-2015.

    Article  Google Scholar 

  • Kreemer C G, Blewitt G and Klein E C 2014 A geodetic plate motion and Global Strain Rate Model; Geochem. Geophys. Geosyst. 15 3849–3889, https://doi.org/10.1002/2014gc005407.

    Article  Google Scholar 

  • Kulhanek O 2005 Seminar on b-value; Department of Geophysics, Charles University, Prague, December 10–19, 2005.

  • Kumar S, Wesnousky W G, Rockwell T K, Ragona D, Thakur V C and Seitz G G 2001 Earthquake recurrence and rupture dynamics of Himalayan Frontal Thrust, India; Science 294 2328–2331.

    Article  Google Scholar 

  • Kumar S, Wesnousky S G, Rockwell T K, Briggs R W, Thakur V C and Jayangondaperumal R 2006 Paleoseismic evidence of great surface rupture earthquakes along the Indian Himalaya; J. Geophys. Res. Solid Earth 111 B3, https://doi.org/10.1029/2004jb003309.

    Article  Google Scholar 

  • Larson K, Burgmann R, Bilham R and Freymueller J T 1999 Kinematics of the India-Eurasia collision zone from GPS measurements; J. Geophys. Res. 104 1077–1094, https://doi.org/10.1029/1998jb900043.

    Article  Google Scholar 

  • Liang S, Gan W, Shen C, Xiao G, Liu J, Chen W, Ding X and Zhou D 2013 Three–dimensional velocity field of present–day crustal motion of the Tibetan Plateau derived from GPS measurements; J. Geophys. Res. Solid Earth 118 5722–5732, https://doi.org/10.1002/2013jb010503.

    Article  Google Scholar 

  • Mahanta K, Chowdhury J D, Baruah S, Kumar A, Kumar A, Laishram S and Barman P 2012 Earthquakes and crustal deformation studies of the seismically active Kopili Fault as well as North East India: A scientific field study using Global Positioning System (GPS); Clarion 1 51–58.

    Google Scholar 

  • Mahesh P, Catherine J K, Gahalaut V K and Kundu B et al. 2012 Rigid Indian plate: Constraints from GPS measurements; Gondwana Res. 22 1068–1072, https://doi.org/10.1016/j.gr.2012.01.011.

    Article  Google Scholar 

  • Mazzotti S, James T S, Henton J and Adams J 2005 GPS crustal strain, postglacial rebound, and seismicity in eastern North America: The St. Lawrence valley example; J. Geophys. Res. 110 B11301, https://doi.org/10.1029/2004jb003590.

    Article  Google Scholar 

  • Mazzotti S, Leonard L J, Cassidy J F, Rogers G C and Halchuk S 2011 Seismic hazard in western Canada from GPS strain rates versus earthquake catalog; J. Geophys. Res. 116 B12310, https://doi.org/10.1029/2011jb008213.

    Article  Google Scholar 

  • Maurin T, Masson F, Rangin C, Min U T and Philippe C 2010 First global positioning system results in northern Myanmar: Constant and localized slip rate along the Sagaing fault; Geology 38 591–594, http://dx.doi.org/10.1130/G30872.1.

    Article  Google Scholar 

  • Maurer J, Segall P and Bradley A M 2017 Bounding the moment deficit rate on crustal faults using geodetic data: Methods; J. Geophys. Res. Solid Earth 122, https://doi.org/10.1002/2017jb014300.

  • Meigs A J, Burbank D W and Beck R A 1995 Middle-late Miocene (> 10 Ma) formation of the Main Boundary thrust in the western Himalaya; Geology 23(5) 423–426.

    Article  Google Scholar 

  • Morell K D, Sandiford M, Rajendran C P, Rajendran, K, Alimanovic A, Fink D and Sanwal J 2015 Geomorphology reveals active décollement geometry in the central Himalayan seismic gap; Lithosphere 7 247–256, https://doi.org/10.1130/L407.1.

    Article  Google Scholar 

  • Molnar P and Tapponnier P 1975 Cenozoic tectonics of Asia: Effects of a continental collision; Science 189 419–426, https://doi.org/10.1126/science.189.4201.419.

    Article  Google Scholar 

  • Mugnier J L, Gajurel A, Huyghe P, Jayangondaperumal R, Jouanne F and Upreti B 2013 Structural interpretation of the great earthquakes of the last millennium in the central Himalaya; Earth Sci. Rev. 127 30–47.

    Article  Google Scholar 

  • Mukul M, Jade S, Bhattacharyya A K and Bhusan K 2010 Crustal shortening in convergent orogens: Insights from global positioning system (GPS) measurements in northeast India; J. Geol. Soc. India 75 302–312, https://doi.org/10.1007/s12594-010-0017-9.

    Article  Google Scholar 

  • Mullick M, Riguzzi F and Mukhopadhyay D 2009 Estimates of motion and strain rates across active faults in the frontal part of eastern Himalayas in North Bengal from GPS measurements; Terra Nova 21 410–415, https://doi.org/10.1111/j.1365-3121.2009.00898.x.

    Article  Google Scholar 

  • Mukhopadhyay B, Acharyya A and Dasgupta S 2011 Potential source zones for Himalayan earthquakes: Constraints from spatial–temporal clusters; Nat. Hazards 57 369–383.

    Article  Google Scholar 

  • Mukhopadhyay B, Riguzzi F, Mullick M and Sengupta D 2020 Estimation of earthquake hazard in the seismic source zones along Indian plate boundary from GPS velocity derived strain rate and moment deficit; Indian J. Geosci. 74(1) 1–21.

    Google Scholar 

  • Nandy D R 2001 Geodynamics of northeastern India and adjoining region; ACB Publication, Kolkata, 209p.

    Google Scholar 

  • Pancha A, Anderson J G and Kreeme C 2006 Comparison of seismic and geodetic scalar moment rates across the basin and range province; Bull. Seismol. Soc. Am. 96(1) 11–32, https://doi.org/10.1785/0120040166.

    Article  Google Scholar 

  • Pandey M R, Tandukar R P, Avouac J P, Vergne J and Héritier T 1999 Seismotectonics of the Nepal Himalaya from a local seismic network; J. Asian Earth Sci. 17 703–712.

    Article  Google Scholar 

  • Paul A and Singh R 2017 Relevance of seismicity in Kumaun–Garhwal Himalaya in context of recent 25th April 2015 Mw 7.8 Nepal earthquake; J. Asian Earth Sci. 141 253–258.

    Article  Google Scholar 

  • Paul J, Bürgmann R, Gaur V K, Bilham R, Larson K M, Ananda M B, Jade S, Mukul M, Anupama T S, Satyal G and Kumar D 2001 The motion and active deformation of India; Geophys. Res. Lett. 28 647–650, https://doi.org/10.1029/2000gl011832.

    Article  Google Scholar 

  • Priestley K, Ho T and Mitra S 2018 The crust structure of the Himalaya: A synthesis; Geol. Soc. London, Spec. Publ. 483, https://doi.org/10.1144/SP483-2018-127.

  • Quanru G, Guitang P, Zheng L, Zhiliang C, Fisher R D, Sun Z, Ou C, Dong H, Wang X, Li S, Lon X and Fu H 2006 The eastern Himalayan Syntaxes: Major tectonic domains, ophiolite melanges and geologic evolution; J. Asian Earth Sci. 27 265–285.

    Article  Google Scholar 

  • Riguzzi F, Mukhopadhyay B, Mullick M and Sengupta D 2019 Estimation of earthquake hazard in the source zones along Indian plate boundary from GPS velocity derived strain rate and moment deficit; EGU General Assembly, Abstract, April 2019.

  • Saikia S, Chopra S, Baruah S, Baidya P R and Singh U K 2016 Crustal imaging of the Northwest Himalaya and its foredeep region from teleseismic events; Geomatics Nat. Hazards Risk 7(4) 1265–1286, http://dx.doi.org/10.1080/19475705.2015.1063095.

    Article  Google Scholar 

  • Schiffman C, Bali B S, Szeliga W and Bilham R 2013 Seismic slip deficit in the Kashmir Himalaya from GPS observations; Geophys. Res. Lett., https://doi.org/10.1002/2013gl057700.

  • Seeber L, Armbruster J G and Quittmeyer R 1981 Seismicity and continental subduction in the Himalayan Arc; In: Zagros, Hindu Kush, Himalaya geodynamic evolution (eds) Gupta H K and Delany F M, Washington, DC: American Geographical Union, Geodyn. Ser. 4 215–242.

  • Shen Z K, Jackson D D and Ge B X 1996 Crustal deformation across and beyond the Los Angeles basin from geodetic measurements; J. Geophys. Res. 101 27,957–27,980.

    Article  Google Scholar 

  • Shen Z K, Jackson D D and Kagan Y Y 2007 Implications of geodetic strain rate for future earthquakes, with a five–year forecast of M5 earthquakes in Southern California; Seismol. Res. Lett. 78 116–120.

    Article  Google Scholar 

  • Singh R, Paul A, Kumar A, Kumar P and Sundriyal Y P 2018a Estimation and applicability of attenuation characteristics for source parameters and scaling relations in the Garhwal Kumaun Himalaya region, India; J. Asian Earth Sci. 159 42–59.

    Article  Google Scholar 

  • Singh R, Prasath R A, Paul A and Kumar N 2018b Earthquake swarm of Himachal Pradesh in northwest Himalaya and its seismotectonic implications.; Phys. Earth Planet. Int. 275 44–55.

    Article  Google Scholar 

  • Sol S, Meltzer A, Bürgmann R, van der Hilst R D, Cambridge R K, Chen Z, Koons P O, Lev E, Liu Y P, Zeitler P K, Zhang X, Zhang J and Zurek B 2007 Geodynamics of the southeastern Tibetan Plateau from seismic anisotropy and geodesy; Geology 35 563–566, https://doi.org/10.1130/g23408a.1.

    Article  Google Scholar 

  • Stevens V L 2016 Reconciling geodetic strain and seismicity rate with the frequency-magnitude relation of the largest earthquakes; PhD Thesis, California Institute of Technology, Pasadena, California, 123p.

  • Stevens V L and Avouac J P 2015 Interseismic coupling on the MHT; Geophys. Res. Lett. 42 5828–5837.

    Article  Google Scholar 

  • Stevens V L and Avouac J P 2016 Millenary Mw > 9.0 earthquakes required by geodetic strain in the Himalaya; Geophys. Res. Lett. 43 1118–1123, https://doi.org/10.1002/2015gl067336.

    Article  Google Scholar 

  • Steckler M S, Mondal D R, Akhter S H, Seeber L, Feng L, Gale J, Hill E M and Howe M J 2016 Locked and loading megathrust linked to active subduction beneath the Indo-Burman Ranges; Nat. Geosci. 9 615–618, https://doi.org/10.1038/ngeo2760.

    Article  Google Scholar 

  • Spicer R A, Harris N B W, Widdowson M, Harman A B, Guo S, Valdes P J, Wolfe J A and Kelly S P 2003 Constant elevation of southern Tibet over the past 15 million years; Nature 421 622–624.

    Article  Google Scholar 

  • Tapponnier P and Molnar P 1976 Slip-line field theory and large-scale continental tectonics; Nature 264 319–324.

    Article  Google Scholar 

  • Tapponnier P, Xu Z Q, Roger F, Meyer B, Arnaud N, Wittlinger G and Yang J S 2001 Oblique stepwise rise and growth of the Tibet plateau; Science 294 1671–1677.

    Article  Google Scholar 

  • Tang C, Zhu L and Huang R 2016 Empirical MwML, mb, and Ms conversions in western China; Bull. Seismol. Soc. Am. 106(6) 2614–2623, https://doi.org/10.1785/0120160148.

    Article  Google Scholar 

  • Thakur V C 2004 Active tectonics of Himalayan frontal thrust and seismic hazard to Ganga Plain; Curr. Sci. 86(11) 1554–1560.

    Google Scholar 

  • Tobgay T, McQuarriea N, Longa S, Kohn M J and Corrieb S L 2012 The age and rate of displacement along the Main Central Thrust in the western Bhutan Himalaya; Earth Planet. Sci. Lett. 319–320 146–158.

    Article  Google Scholar 

  • Tong T, Peng M, Tan H, Lin C, Wang M and Xu L 2018 Uplift and partial melt beneath eastern Himalayan syntaxis revealed by receiver function analysis from Namche Barwa seismic array; American Geophysical Union, Fall Meeting 2018, abstract #T11D-0182.

  • Valdiya K S 2016 Early Proterozoic in the Himalaya: Rocks, metamorphism and igneous activities; In: The making of India, Society. Earth. Scientists Series. Springer, Cham, https://doi.org/10.1007/978-3-319-25029-8_10.

  • Vernant P, Bilham R, Szeliga W, Drupka D, Kalita S, Bhattacharyya A K, Gaur V K, Pelgay P, Cattin R and Berthet T 2014 Clockwise rotation of the Brahmaputra valley relative to India: Tectonic convergence in the eastern Himalaya, Naga Hills and Shillong Plateau; J. Geophys. Res., http://dx.doi.org/10.1002/2014JB011196.

  • Ward S N 1998a On the consistency of earthquake moment release and space geodetic strain rates: United States; Geophys. J. Int. 134 172–186, https://doi.org/10.1046/j.1365-246x.1998.00556.x.

    Article  Google Scholar 

  • Ward S N 1998b On the consistency of earthquake moment release and space geodetic strain rates: Europe; Geophys. J. Int. 135 1011–1018, https://doi.org/10.1046/j.1365-246x.1998.t01-2-00658.x.

    Article  Google Scholar 

  • Wells D L and Coppersmith K J 1994 New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement; Bull. Seismol. Soc. Am. 84 974–1002.

    Google Scholar 

  • Wesnousky S G, Kumahara Y, Chamlagain D K, Pierce I K, Karki A and Gautam D 2017 Geological observations on large earthquakes along the Himalayan frontal fault near Kathmandu Nepal; Earth Planet. Sci. Lett. 457 366–375.

    Article  Google Scholar 

  • Wesnousky S G, Kumahara Y, Chamlagain D and Neupane P C 2019 Large Himalayan Frontal Thrust paleoearthquake at Khayarmara in Eastern Nepal; J. Asian Earth Sci., https://doi.org/10.1016/j.jseaes.2019.01.008.

    Article  Google Scholar 

  • Wiemer S and Wyss M 2000 Minimum magnitude of completeness in earthquake catalogs: Example from Alaska, the western United States, and Japan; Bull. Seismol. Soc. Am. 90 859–869.

    Article  Google Scholar 

  • Wheeler R L 2009 Methods of Mmax estimation east of Rocky Mountains; U.S. Geological Survey Open-File Report 2009–1018, 44p.

  • Zeitler P K, Meltzer A S, Koons P O, Craw D, Hallet B, Chamberlain C P, Kidd W S F, Park S K, Seeber L, Bishop M and Shroder J 2001 Erosion, Himalayan geodynamics, and the geomorphology of metamorphism; GSA Today 11 4–9.

    Article  Google Scholar 

  • Zhang P, Shen Z, Wang M, Gan W, Burgmann R, Molnar P, Wang Q, Niu Z, Sun J, Wu J, Hanrong S and Xinzhao Y 2004 Continuous deformation of the Tibetan Plateau from global positioning system data; Geology 32 809–812, https://doi.org/10.1130/g20554.1.

    Article  Google Scholar 

  • Zhenhan W U, Daogong H U, Piesheng Y E and Zhonghai W 2013 Early Cenozoic tectonics of the Tibetan Plateau; Acta. Geol. Sin. 87(2) 289–303.

    Article  Google Scholar 

  • Zilio L D, Dinther Y V, Gerya T and Avouac J P 2019 Bimodal seismicity in the Himalaya controlled by fault friction and geometry; Nat. Comm. 10 48, https://doi.org/10.1038/s41467-018-07874-8.

    Article  Google Scholar 

  • Zuza A V and Cao W 2020 Seismogenic thickness of California: Implications for thermal structure and seismic hazard; Tectonophys. 782–783 228426, https://doi.org/10.1016/j.tecto.2020.228426.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the help and co-operation extended by Dr Federica Riguzzi and Dr Mallika Mullick for the calculation of strain rate (SR) from GPS data, which has also been used in two earlier publications (Riguzzi et al. 2019; Mukhopadhyay et al. 2020). Shri Sujit Dasgupta has been acknowledged for sharing part of the write-up. The author is indebted to Dr Anand Joshi, Associate Editor and two anonymous reviewers whose comments have improved the quality of the scientific presentation.

Author information

Authors and Affiliations

Authors

Contributions

Basab Mukhopadhyay: Conceptualization, visualization, execution, modelling and drafting of figures, writing – reviewing and editing, and data curation.

Corresponding author

Correspondence to Basab Mukhopadhyay.

Additional information

Communicated by Anand Joshi

Supplementary material pertaining to this article is available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhopadhyay, B. An estimation of probable seismic hazard in the active deformation front of the Himalayan arc. J Earth Syst Sci 130, 43 (2021). https://doi.org/10.1007/s12040-020-01544-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-020-01544-4

Keywords

Navigation