Skip to main content
Log in

Moderate earthquakes striking Tehran metropolitan area: a case study of 2017 Malard and 2020 Damavand seismic sequences

  • Research
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

The 2017 Malard and 2020 Damavand moderate crustal earthquakes (Mw 4.8) occurred about 40 km west and about 55 km northeast of Tehran, the capital and economic heart of Iran, with a metropolitan population of over 15 million. Seismic hazard assessment in the region has been affected by few historically documented destructive earthquakes with magnitudes around 7.0 (e.g., 312–280 B.C, 958, 1177, and 1830 A.D.); however, in the absence of large contemporary earthquakes, a detailed analysis of moderate earthquakes is essential. In this study, seismic sources of the two earthquakes are characterized in terms of focal mechanism, fault geometry, and rupture directivity through waveform inversion, hypocenter relocation, and empirical Green’s function methods. The eastern segment of the well-known Mosha fault is responsible for the 2020 Damavand earthquake, with a left-lateral strike-slip mechanism ruptured unilaterally westward where Tehran is situated. The 2017 Malard earthquake is a peculiar case in a poorly studied region. For this event, we propose a left-lateral strike-slip mechanism corresponding to E-W trending Mahdasht fault. This event was preceded by a swarm of events, 12 km northward, that started a few months earlier and terminated right before the mainshock. The energy released due to this precursory activity was higher than the Malard mainshock and its aftershocks. The events seem to align along an N-S transverse basement fault that, further southward, may intersect with the Mahdasht fault system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbassi MR, Farbod Y (2009) Faulting and folding in quaternary deposits of Tehran’s piedmont (Iran). J Asian Earth Sci 34:522–531

    Article  ADS  Google Scholar 

  • Allen MB, Ghassemi MR, Shahrabi M, Qorashi M (2003) Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran. J Struct Geol 25:659–672

    Article  ADS  Google Scholar 

  • Ambraseys NN, Melville CP (2005) A history of Persian earthquakes. Cambridge Univ Press, London, 212 pp

  • Amini S, Roberts R, Lund B (2020) Directivity analysis of the 2017 December Kerman earthquakes in Eastern Iran. J Seismol 24:531–547

    Article  Google Scholar 

  • Ansari S, Yaminifard F, Tatar M (2015) Moment tensor solution of the Central-Western Alborz (Iran) earthquakes based on regional data. Sci Q J Geosci 24:359–368

    Google Scholar 

  • Ashtari M, Hatzfeld D, Kamalian N (2005) Microseismicity in the region of Tehran. Tectonophysics 395:193–208

    Article  ADS  Google Scholar 

  • Azad SS, Ritz J-F, Abbassi MR (2011) Left-lateral active deformation along the Mosha–North Tehran fault system (Iran): morphotectonics and paleoseismological investigations. Tectonophysics 497:1–14

    Article  ADS  Google Scholar 

  • Bachmanov DM, Trifonov VG, Hessami KT et al (2004) Active faults in the Zagros and central Iran. Tectonophysics 380:221–241

    Article  ADS  Google Scholar 

  • Bakun WH, Bufe CG, Stewart RM (1976) Body-wave spectra of central California earthquakes. Bull Seismol Soc Am 66:363–384

    Google Scholar 

  • Berberian M, Yeats RS (1999) Patterns of historical earthquake rupture in the Iranian Plateau. Bull Seismol Soc Am 89:120–139

    Article  Google Scholar 

  • Berberian M, Yeats RS (2016) Tehran: an earthquake time bomb. In: Tecton Evol Collision, Seism Southwest Asia Honor Man Berberian’s Forty-Five Years Res Contrib, vol 525. Geological Society of America, Boulder, pp 87–170

  • Berberian M, Ghoreishi M, Ravesh BA, Ashjaei AM (1985) Seismotectonic and earthquake fault hazard investigations in the Tehran region [in Persian]. Geol Surv of Iran, Tehran

  • Beresnev IA (2003) Uncertainties in finite-fault slip inversions: to what extent to believe?(a critical review). Bull Seismol Soc Am 93:2445–2458

    Article  Google Scholar 

  • Buforn E, Pro C, Cesca S et al (2011) The 2010 Granada, Spain, deep earthquake. Bull Seismol Soc Am 101:2418–2430

    Article  Google Scholar 

  • Calderoni G, Rovelli A, Ben-Zion Y, Di Giovambattista R (2015) Along-strike rupture directivity of earthquakes of the 2009 L’Aquila, central Italy, seismic sequence. Geophys J Int 203:399–415

    Article  ADS  Google Scholar 

  • Cesca S, Heimann S, Stammler K, Dahm T (2010) Automated procedure for point and kinematic source inversion at regional distances. J Geophys Res Solid Earth 115:B06304

  • Cesca S, Rohr A, Dahm T (2013) Discrimination of induced seismicity by full moment tensor inversion and decomposition. J Seismol 17:147–163

    Article  Google Scholar 

  • Chu S, Beroza GC, Ellsworth WL (2019) Source parameter variability of intermediate-depth earthquakes in Japanese subduction zones. J Geophys Res Solid Earth 124:8704–8725

  • Custódio S, Cesca S, Heimann S (2012) Fast kinematic waveform inversion and robustness analysis: application to the 2007 M w 5.9 horseshoe abyssal plain earthquake offshore Southwest Iberia. Bull Seismol Soc Am 102:361–376

    Article  Google Scholar 

  • De Martini PM, Hessami K, Pantosti D et al (1998) A geologic contribution to the evaluation of the seismic potential of the Kahrizak fault (Tehran, Iran). Tectonophysics 287:187–199

    Article  ADS  Google Scholar 

  • Djamour Y, Vernant P, Bayer R et al (2010) GPS and gravity constraints on continental deformation in the Alborz mountain range. Iran Geophys J Int 183:1287–1301

    Article  ADS  Google Scholar 

  • Domingues A, Custodio S, Cesca S (2013) Waveform inversion of small-to-moderate earthquakes located offshore southwest Iberia. Geophys J Int 192:248–259

    Article  ADS  Google Scholar 

  • Donner S, Rößler D, Krüger F et al (2013) Segmented seismicity of the M w 6.2 Baladeh earthquake sequence (Alborz Mountains, Iran) revealed from regional moment tensors. J Seismol 17:925–959

    Article  Google Scholar 

  • Donner S, Krüger F, Rößler D, Ghods A (2014) Combined inversion of broadband and short-period waveform data for regional moment tensors: a case study in the Alborz Mountains, Iran. Bull Seismol Soc Am 104:1358–1373

    Article  Google Scholar 

  • Ehteshami-Moinabadi M, Zare M, Kamranzad F (2019) The Malard M 5.2 Earthquake (west Tehran, Iran) a moderate earthquake with important active tectonic results. National Conference on Knowledge Based Research in Earth Sciences, Shahid Chamran Univ of Ahvaz

  • Görgün E, Görgün B (2015) Seismicity of the 24 May 2014 Mw 7.0 Aegean Sea earthquake sequence along the North Aegean trough. J Asian Earth Sci 111:459–469

  • Hartzell SH (1978) Earthquake aftershocks as Green’s functions. Geophys Res Lett 5:1–4

    Article  ADS  Google Scholar 

  • Heimann S (2011) A robust method to estimate kinematic earthquake source parameters. PhD thesis, Univ Hamburg

  • Hessami K, Jamali F, Tabassi H (2003) Major active faults of Iran. IIEES, Tehran

    Google Scholar 

  • Jackson J, Priestley K, Allen M, Berberian M (2002) Active tectonics of the south Caspian basin. Geophys J Int 148:214–245

    ADS  Google Scholar 

  • Jost ML, Herrmann RB (1989) A student’s guide to and review of moment tensors. Seismol Res Lett 60:37–57

    Article  Google Scholar 

  • Kahbasi A, Moradi A (2016) Earthquake-explosion discrimination using waveform cross-correlation technique for mines in southeast of Tehran. J Seismol 20:569–578

    Article  Google Scholar 

  • Landgraf A, Ballato P, Strecker MR et al (2009) Fault-kinematic and geomorphic observations along the North Tehran Thrust and Mosha Fasham Fault, Alborz mountains Iran: implications for fault-system evolution and interaction in a changing tectonic regime. Geophys J Int 177:676–690

    Article  ADS  Google Scholar 

  • Ma J, Dineva S, Cesca S, Heimann S (2018) Moment tensor inversion with three-dimensional sensor configuration of mining induced seismicity (Kiruna mine, Sweden). Geophys J Int 213:2147–2160

    Article  ADS  Google Scholar 

  • Momeni S, Madariaga R (2022) Long-term triggered seismicity on the Mosha fault by Damavand volcano, Iran: implications on the seismic hazard of Tehran metropolis. Front. Earth Sci 10

  • Mottaghi AA, Rezapour M, Yaminifard F (2010) Double-difference relocation of earthquake hypocenters along the southern flank of the Central Alborz. Iran Bull Seismol Soc Am 100:2014–2023

    Article  Google Scholar 

  • Nazari H (2006) Analyse de la tectonique récente et active dans l'Alborz Central et la région de Téhéran: Approche morphotectonique et paléoseismologique. PhD thesis, Fac. des Sci. et des Tech. du Languedoc, Univ. Montpellier II, Montpellier, 246 pp

  • Nazari H, Ritz J, Salamati R et al (2010) Distinguishing between fault scarps and shorelines: the question of the nature of the Kahrizak, North Rey and South Rey features in the Tehran plain (Iran). Terra Nov 22:227–237

    Article  ADS  Google Scholar 

  • Niazpour B, Shomali ZH, Cesca S (2021) Source study of 2017 Hojedk triplet earthquake sequence, southeast Iran. J Seismol 25:85–101

    Article  Google Scholar 

  • Park J, Levin V (2000) Receiver functions from multiple-taper spectral correlation estimates. Bull Seismol Soc Am 90:1507–1520

    Article  Google Scholar 

  • Prieto GA, Parker RL, Vernon Iii FL (2009) A Fortran 90 library for multitaper spectrum analysis. Comput Geosci 35:1701–1710

    Article  ADS  Google Scholar 

  • Rashidi A, Derakhshani R (2022) Strain and moment rates from GPS and seismological data in northern Iran: implications for an evaluation of stress trajectories and probabilistic fault rupture hazard. Remote Sens (Basel) 14:2219

    Article  ADS  Google Scholar 

  • Rezapour M (2016) The 2012 August 11 MW 6.5, 6.4 Ahar-Varzghan earthquakes, NW Iran: aftershock sequence analysis and evidence for activity migration. Geophys J Int 204:1191–1203

    Article  ADS  Google Scholar 

  • Rieben H (1955) The geology of the Teheran plain. Am J Sci 253:617–639

    Article  ADS  Google Scholar 

  • Ritz J-F, Nazari H, Ghassemi A et al (2006) Active transtension inside central Alborz: a new insight into northern Iran–southern Caspian geodynamics. Geology 34:477–480

    Article  ADS  Google Scholar 

  • Ritz J, Nazari H, Balescu S, Lamothe M, Salamati R, Ghassemi A, Shafei A, Ghorashi M, Saidi A (2012) Paleoearthquakes of the past 30,000 years along the North Tehran Fault (Iran). J Geophys Res Solid Earth 117:B06305

  • Semmane F, Benabdeloued BYN, Heddar A, Khelif MF (2017) The 2014 Mihoub earthquake (Mw4. 3), northern Algeria: empirical Green’s function analysis of the mainshock and the largest aftershock. J Seismol 21:1385–1395

    Article  Google Scholar 

  • Sen AT, Cesca S, Bischoff M et al (2013) Automated full moment tensor inversion of coal mining-induced seismicity. Geophys J Int 195:1267–1281

    Article  ADS  Google Scholar 

  • Talebian M, Copley AC, Fattahi M et al (2016) Active faulting within a megacity: the geometry and slip rate of the Pardisan thrust in central Tehran. Iran Geophys Suppl to Mon Not R Astron Soc 207:1688–1699

    Article  Google Scholar 

  • Tatar M, Jackson J, Hatzfeld D, Bergman E (2007) The 2004 May 28 Baladeh earthquake (M w 6.2) in the Alborz, Iran: overthrusting the South Caspian Basin margin, partitioning of oblique convergence and the seismic hazard of Tehran. Geophys J Int 170:249–261

    Article  ADS  Google Scholar 

  • Tatar M, Hatzfeld D, Abbassi A, Fard FY (2012) Microseismicity and seismotectonics around the Mosha fault (Central Alborz, Iran). Tectonophysics 544:50–59

    Article  ADS  Google Scholar 

  • Tchalenko JS, Berberian M, Iranmanesh H, Bailly M, Arsovsky M (1974) Tectonic framework of the Tehran region. Geol Surv Iran Rep 29:7–46

  • Thomson DJ (1982) Spectrum estimation and harmonic analysis. Proc IEEE 70:1055–1096

  • Viegas G, Abercrombie RE, Kim W (2010) The 2002 M5 Au Sable Forks, NY, earthquake sequence: source scaling relationships and energy budget. J Geophys Res Solid Earth 115:B07310

  • Waldhauser F (2001) hypoDD--a program to compute double-difference hypocenter locations. US Geol Surv Open File Rep 01–113

  • Waldhauser F, Ellsworth WL (2002) Fault structure and mechanics of the Hayward fault, California, from double-difference earthquake locations. J Geophys Res Solid Earth 107:ESE-3

    Article  Google Scholar 

  • Wang R (1999) A simple orthonormalization method for stable and efficient computation of Green’s functions. Bull Seismol Soc Am 89:733–741

    Article  MathSciNet  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002

    Article  Google Scholar 

  • Yassaghi A, Naeimi A (2011) Structural analysis of the Gachsar sub-zone in central Alborz range; constrain for inversion tectonics followed by the range transverse faulting. Int J earth Sci 100:1237–1249

    Article  Google Scholar 

  • Yousefi E, Friedberg JL (1977) Aeromagnetic map of Iran (Amol). Scale 1: 250,000. Geol Surv Iran

Download references

Acknowledgements

We would like to thank IRSC for providing additional data. We sincerely appreciate the valuable feedback and insightful comments from the three reviewers and editor, which greatly improved the manuscript.

Availability of data and materials

Waveforms, earthquakes, and focal mechanisms catalogs from Iranian Seismological Center (http://irsc.ut.ac.ir), waveforms from the International Institute of Earthquake Engineering and Seismology (http://www.iiees.ac.ir/), earthquake catalogs from the International Seismological Centre (http://www.isc.ac.uk), and focal mechanisms from published papers noted in the references and Global Centroid Moment Tensor (https://www.globalcmt.org/) are used. Information on the Mahdasht fault system is from the Geological Survey of Iran (https://gsi.ir/fa/news/22870/). Information on land subsidence in the Meshkin-Dasht region is from https://civilica.com/doc/853270/ (only available in Persian). Data preprocessing is done by SAC (Seismic Analysis Code; https://ds.iris.edu/ds/nodes/dmc/software/downloads/sac/). Pyrocko toolbox (https://pyrocko.org/) has been used for pre-calculating Green’s function database. Maps are plotted using GMT (Generic Mapping Tools; https://www.generic-mapping-tools.org/) and Matplotlib (https://matplotlib.org/). Topography is from SRTM 30 m and 90 m.

Funding

Z. H. S. received financial support from the University of Tehran for this research.

Author information

Authors and Affiliations

Authors

Contributions

Z. H. S. conceptualized and supervised the research and reviewed and edited the manuscript. B. N. prepared data, performed the calculations and runs, plotted the figures, and drafted the manuscript.

Corresponding author

Correspondence to Bita Niazpour.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niazpour, B., Shomali, Z.H. Moderate earthquakes striking Tehran metropolitan area: a case study of 2017 Malard and 2020 Damavand seismic sequences. J Seismol 28, 103–117 (2024). https://doi.org/10.1007/s10950-023-10187-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-023-10187-z

Keywords

Navigation