Skip to main content

Advertisement

Log in

An Ediacaran–Cambrian thermal imprint in Rajasthan, western India: Evidence from 40Ar–39Ar geochronology of the Sindreth volcanics

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

The Sindreth Group exposed near Sirohi in southern Rajasthan, western India, is a volcanosedimentary sequence. Zircons from Sindreth rhyolite lavas and tuffs have yielded U–Pb crystallization ages of ~768–761 Ma, suggesting that the Sindreth Group is a part of the Malani magmatic event. Earlier 40Ar–39Ar studies of other Malani volcanic and plutonic rocks yielded disturbed argon release spectra, ascribed to a ~550 Ma thermal event possibly related to the Pan-African orogeny. To test and confirm this possibility, we dated two whole-rock and three feldspar separate samples of the Sindreth volcanics by the 40Ar–39Ar method. All samples yield disturbed argon release spectra suggesting radiogenic argon loss and with plateau segments at 550 Ma or 490 Ma. We interpret these as events of argon loss at 550–490 Ma related to an Ediacaran–Cambrian thermal event, possibly related to the Malagasy orogeny. The combined older and new 40Ar–39Ar results are significant in showing that whereas Ediacaran–Cambrian magmatic and metamorphic events are well known from many parts of India, they left thermal imprints in much of Trans-Aravalli Rajasthan as well. The overall evidence is consistent with a model of multiphase assembly of Gondwanaland from separate continental landmasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ahmad T, Dragusanu V and Tanaka T 2008 Provenance of Proterozoic basal Aravalli mafic volcanic rocks from Rajasthan, northewestern India: Nd isotope evidence for enriched mantle reservoirs; Precamb. Res. 162 150–159.

    Article  Google Scholar 

  • Bartlett J M, Harris N B W, Hawkesworth C J and Santosh M 1996 New isotope constraints on the crustal evolution of south India and Pan-African granulite metamorphism; Geol. Soc. India Memoir 34 391–397.

    Google Scholar 

  • Bhushan S K and Chandrasekaran V 2002 Geology and geochemistry of the magmatic rocks of the Malani igneous suite and the Tertiary volcanic province of western Rajasthan; Geol. Surv. India Memoir 126 179p.

    Google Scholar 

  • Bhutani R, Pande K and Venkatesan T R 2004 Tectono-thermal evolution of India–Asia collision zone based on 40Ar–39Ar thermochronology in Ladakh, India; In: Magmatism in India through Time (eds) Sheth H C and Pande K; Proc. Indian Acad. Sci. (Earth Planet. Sci.) 113 737–754.

  • Biswal T K 1988 Polyphase deformation in Delhi rocks, SE of Amirgad, Banaskantha district of Gujarat; In: Precambrian of the Aravalli Mountain (ed.) Roy A B; Geol. Soc. India Memoir 7 267–278.

  • Chore S A and Mohanty M 1998 Stratigraphy and tectonic settings of the Trans-Aravalli Neoproterozoic sequences in Rajasthan; J. Geol. Soc. India 51 57–68.

    Google Scholar 

  • Choudhary A K, Gopalan K and Sastry A C 1984 Present status of the geochronology of the Precambrian rocks of Rajasthan; Tectonophys. 105 131–140.

    Article  Google Scholar 

  • Choudhary A K, Harris N B W, van Calsteren P and Hawkesworth C J 1992 Pan-African charnockite formation in Kerala, south India; Geol. Mag. 129 257–264.

    Article  Google Scholar 

  • Collins A S and Pisarevsky S A 2005 Amalgamating eastern Gondwana: The evolution of the circum-Indian orogens; Earth-Sci. Rev. 71 229–270.

    Article  Google Scholar 

  • Coulson A L 1933 The Geology of Sirohi State, Rajputana; Geol. Surv. India Memoir 63 166p.

  • Crawford A R 1970 The Precambrian geochemistry of Rajasthan and Bundelkhand, northern India; Can. J. Earth Sci. 7 91–110.

    Article  Google Scholar 

  • Crawford A R and Compston W 1970 The age of the Vindhyan system of peninsular India; Quart. J. Geol. Soc. London 125 351–372.

    Article  Google Scholar 

  • De Wall H and Pandit M K 2007 Cryptic fabrics in epiclastics of the Sindreth Group: Evidence for Late Neoproterozoic deformation in the western foreland of the Delhi fold belt, northwest India; Beringeria 37 33–40.

    Google Scholar 

  • De Wall H, Schöbel S, Pandit M K, Sharma K K and Just J 2010 A record of ductile syn-intrusional fabrics to post-solidification cataclasis: Magnetic fabric analysis of Neoproterozoic Mirpur and Mt. Abu granitoids, NW India; J. Geol. Soc. India 75 239–253.

    Article  Google Scholar 

  • De Wall H, Pandit M K, Dotzler R and Just J 2012 Cryogenian transpression and granite intrusion along the western margin of Rodinia (Mt. Abu region): Magnetic fabric and geochemical inferences on Neoproterozoic geodynamics of the NW Indian block; Tectonophys. 554–557 143–158.

    Article  Google Scholar 

  • Dhar S, Frei R, Kramers J D, Nägler T F and Kochhar N 1996 Sr, Pb, Nd isotope studies and their bearing on the petrogenesis of the Jalore and Siwana complexes, Rajasthan, India; J. Geol. Soc. India 48 151–160.

    Google Scholar 

  • Garzanti E, Casnedi R and Jadoul F 1986 Sedimentary evidence of a Cambrio–Ordovician orogenic event in the NW Himalaya; Sedim. Geol. 48 237–265.

    Article  Google Scholar 

  • Ghosh S, Chakraborty S, Bhalla J K, Paul D K, Sarkar A, Bishui P K and Gupta S N 1991 Geochronology and geochemistry of granite plutons from east Khasi hills, Meghalaya; J. Geol. Soc. India 37 331–342.

    Google Scholar 

  • Gopalan K, Macdougall J D, Roy A B and Murali A V 1990 Sm–Nd evidence for 3.3 Ga old rocks in Rajasthan; Precamb. Res. 48 287–297.

    Article  Google Scholar 

  • Gregory L C, Meert J G, Bingen B, Pandit M K and Torsvik T H 2009 Paleomagnetism and geochronology of the Malani igneous suite, northwest India: Implications for the configuration of Rodinia and the assembly of Gondwana; Precamb. Res. 170 13–26.

    Article  Google Scholar 

  • Harrison T M 1981 Diffusion of 40Ar in hornblende; Contrib. Mineral. Petrol. 78 324–331.

    Article  Google Scholar 

  • Hoffman P F, Kaufman A J, Galen P H and Schrag D P 1998 A Neoproterozoic snowball Earth; Science 281 1342–1346.

    Article  Google Scholar 

  • Islam R, Upadhyay R, Ahmad T, Thakur V C and Sinha A K 1999 Pan-African magmatism and sedimentation in NW Himalayas; Gondwana Res. 2 263–270.

    Article  Google Scholar 

  • Just J, Schulz B, De Wall H, Jourdan F and Pandit M K 2011 Monazite CHIME/EPMA dating of Erinpura granitoid deformation: Implications for Neoproterozoic tectono-thermal evolution of NW India; Gondwana Res. 19 402–412.

    Article  Google Scholar 

  • Khan T, Murata M, Rehman H U, Zafar M and Ozawa H 2012 Nagarparker granites showing Rodinia remnants in the southeastern part of Pakistan; J. Asian Earth Sci. 59 39–51.

    Article  Google Scholar 

  • Kochhar N, Pande K and Gopalan K 1985 Rb/Sr geochronology of Tusham igneous complex, Bhiwani, India; J. Geol. Soc. India 26 216–219.

    Google Scholar 

  • Kröner A, Hegner E, Collins A, Windley B F, Brewer T S, Razakamanana T and Pidgeon R T 2000 Age and magmatic history of the Antananarivo block, central Madagascar, as derived from zircon geochronology and Nd isotopic systematics; Am. J. Sci. 300 251–288.

    Article  Google Scholar 

  • Ludwig K R 2012 Isoplot/Ex, v. 3.75, Berkeley Geochronol. Center, Spec. Publ. 5.

  • Malone S J, Meert J G, Banerjee D M, Pandit M K, Tamrat E, Kamenov G D, Pradhan V R and Sohl L E 2008 Palaeomagnetism and detrital zircon geochronology of the Upper Vindhyan sequence, Son valley and Rajasthan, India: A ca. 1000 Ma closure age of the Purana basins?; Precamb. Res. 164 137–159.

    Article  Google Scholar 

  • McDougall I and Harrison T M 1999 Geochronology and Thermochronology by the 40 Ar/ 39 Ar Method; Oxford Univ. Press, 269p.

  • McQuarrie N, Long S P, Tobgay T, Nesbit J N, Gehrels G and Ducea M N 2013 Documenting basin scale, geometry and provenance through detrital geochemical data: Lessons from the Neoproterozoic to Ordovician Lesser, Greater, and Tethyan Himalayan strata of Bhutan; Gondwana Res. 23 1491–1510.

    Article  Google Scholar 

  • Meert J G 2003 A synopsis of events related to the assembly of eastern Gondwana; Tectonophys. 362 1–40.

    Article  Google Scholar 

  • Meert J G and Lieberman B S 2008 The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran–Cambrian radiation; Gondwana Res. 14 5–21.

    Article  Google Scholar 

  • Meert J G and Van der Voo R 1997 The assembly of Gondwana 800–550 Ma; J. Geodyn. 23 223–235.

    Article  Google Scholar 

  • Meert J G, Van der Voo R and Ayub S 1995 Paleomagnetic investigation of the Neoproterozoic Gagwe lavas and Mbozi complex, Tanzania and the assembly of Gondwana; Precamb. Res. 74 225–244.

    Article  Google Scholar 

  • Meert J G, Pandit M K, Pradhan V R, Banks J C, Sirianni R, Stroud M, Newstead B and Gifford J 2010 The Precambrian tectonic evolution of India: A 3.0 billion year odyssey; J. Asian Earth Sci. 39 483–515.

    Article  Google Scholar 

  • Mehta P K 1977 Rb–Sr geochronology of the Kulu-Manali belt – Its implications for the Himalayan tectogenesis; Geol. Rund. 66 156–175.

    Article  Google Scholar 

  • Mezger K and Cosca M A 1999 The thermal history of the Eastern Ghats belt (India) as revealed by U–Pb and 40Ar/39Ar dating of metamorphic and magmatic minerals: Implications for the SWEAT correlation; Precamb. Res. 94 251–271.

    Article  Google Scholar 

  • Pandit M K, de Wall H, Daxberger H, Just J, Bestmann M and Sharma K K 2011 Mafic rocks from Erinpura gneiss terrane in the Sirohi region: Possible ocean-floor remnants in the foreland of the Delhi fold belt, NW India; J. Earth Syst. Sci. 120 627–641.

    Article  Google Scholar 

  • Pankhurst R J, Moorbath S, Rex D C and Turner G 1973 Mineral age patterns in ca. 3700 my old rocks from west Greenland; Earth Planet. Sci. Lett. 20 157–170.

    Article  Google Scholar 

  • Paquette J-L and Nédélec A 1998 A new insight into Pan-African tectonics in the east–west Gondwana collision zone by U–Pb zircon dating of granites from central Madagascar; Earth Planet. Sci. Lett. 155 45–56.

    Article  Google Scholar 

  • Philllips D and Onstotte T C 1986 Application of 36Ar/40Ar versus 39Ar/40Ar correlation diagram to the 40Ar/39Ar spectra of phlogopites from southern African kimberlites; Geophys. Res. Lett. 13 689–692.

    Article  Google Scholar 

  • Purohit R, Papineau D, Kröner A, Sharma K K and Roy A B 2012 Carbon isotope geochemistry and geochronological constraints of the Neoproterozoic Sirohi Group from northwest India; Precamb. Res. 220–221 80–90.

    Article  Google Scholar 

  • Rao D C V, Santosh M and Won K S 2012 Cryogenian volcanic arc in the NW Indian shield: Zircon SHRIMP U–Pb geochronology of felsic tuffs and implications for Gondwana assembly; Gondwana Res. 22 36–53.

    Article  Google Scholar 

  • Rathore S S 1994 Geochronological Studies of Malani Volcanic and Associated Igneous Rocks of Southwest Rajasthan, India: Implications to Crustal Evolution; Unpubl. Ph.D. thesis, Maharaja Sayajirao Univ., Vadodara, 175p.

  • Rathore S S, Venkatesan T R and Srivastava R K 1996 Rb–Sr and Ar–Ar systematics of Malani volcanic rocks of southwest Rajasthan: Evidence for a younger post-crystallization thermal event; Proc. Indian Acad. Sci. (Earth Planet. Sci.) 115 131–141.

    Google Scholar 

  • Rathore S S, Venkatesan T R and Srivastava R K 1999 Rb–Sr isotope dating of Neoproterozoic (Malani Group) magmatism from south-west Rajasthan, India: Evidence of younger Pan-African thermal event from 40Ar–39Ar studies; Gondwana Res. 2 271–281.

    Article  Google Scholar 

  • Ray J S 2006 Age of the Vindhyan Supergroup: A review of recent findings; J. Earth Syst. Sci. 115 149–160.

    Article  Google Scholar 

  • Renne P R, Swisher C C, Deino A L, Karner D B, Owens T L and DePaolo D J 1998 Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating; Chem. Geol. 145 117–152.

    Article  Google Scholar 

  • Roddick J C, Cliff R A and Rex D C 1980 The evolution of excess argon in alpine biotites – a 40Ar/39Ar analysis; Earth Planet. Sci. Lett. 48 185–208.

    Article  Google Scholar 

  • Roy A B 1988 Stratigraphic and tectonic framework of the Aravalli mountain range; In: Precambrian of the Aravalli Mountain (ed.) Roy A B; Geol. Soc. India Memoir 7 3–31.

    Google Scholar 

  • Roy A B 1990 Evolution of the Precambrian crust of the Aravalli mountain range; In: Precambrian Continental Crust and its Economic Resources (ed.) Naqvi S M; Developments in Precambrian Geology, Elsevier, pp. 327–348.

  • Roy A B and Jakhar S R (eds) 2002 Geology of Rajasthan (Northwest India): Precambrian to Recent; Scientific Publ., Jodhpur, 421p.

  • Roy A B and Sharma K K 1999 Geology of the region around Sirohi town, western Rajasthan: Story of Neoproterozoic evolution of the Trans-Aravalli crust; In: Geological Evolution of Western Rajasthan (ed.) Paliwal B S; Scientific Publ., Jodhpur, pp. 19–33.

  • Roy A B, Kröner A, Rathore S, Laul V and Purohit R 2012 Tectono-metamorphic and geochronologic studies from Sandmata Complex, northwest Indian shield: Implications on exhumation of Late Palaeoproterozoic granulites in an Archaean–early Palaeoproterozoic granite-gneiss terrain; J. Geol. Soc. India 79 323–334.

    Article  Google Scholar 

  • Sen A 2012 40 Ar– 39 Ar Geochronology and Geochemistry of Sindreth and Tavidar Volcanics of Southern Rajasthan; Unpubl. Ph.D. thesis, Indian Institute of Technology Bombay, 166p.

  • Sen A, Pande K, Hegner E, Sharma K K, Dayal A M, Sheth H C and Mistry H 2012 Deccan volcanism in Rajasthan: 40Ar–39Ar geochronology and geochemistry of the Tavidar volcanic suite; J. Asian Earth Sci. 59 127–140.

    Article  Google Scholar 

  • Sharma K K 1996 Stratigraphy, Structure and Tectonic Evolution of the Metasediments and Associated Rocks of the Sirohi Region; Unpubl. Ph.D. thesis, M. L. Sukhadia Univ., Udaipur, 103p.

  • Sharma K K 2004 The Neoproterozoic Malani magmatism of the northwestern Indian shield: Implications for crust-building processes; In: Magmatism in India through Time (eds) Sheth H C and Pande K; Proc. Indian Acad. Sci. (Earth Planet. Sci.) 113 795–807.

    Google Scholar 

  • Sharma K K 2005 Malani magmatism: An extensional lithospheric tectonic origin; In: Plates, Plumes, and Paradigms (eds) Foulger G R, Natland J H, Presnall D C and Anderson D L; Geol. Soc. Am. Spec. Pap. 388 463–476.

    Google Scholar 

  • Shaw R K, Arima M, Kagami H, Fanning C M, Shiriashi K and Motoyoshi Y 1997 Proterozoic events in the Eastern Ghats granulite belt, India: Evidence from Rb–Sr, Sm–Nd systematics and SHRIMP dating; J. Geol. 105 645–656.

    Article  Google Scholar 

  • Snee L W 2002 Argon thermochronology of mineral deposits – A review of analytical methods, formulations and selected applications; U.S. Geol. Surv. Spec. Bull. 2194.

  • Stern R J 1994 Arc assembly and continental collision in the Neoproterozoic East Africa orogen: Implications of the consolidation of Gondwanaland; Ann. Rev. Earth Planet. Sci. 22 319–351.

    Article  Google Scholar 

  • Torsvik T H, Carter L M, Ashwal L D, Bhushan S K, Pandit M K and Jamtveit B 2001 Rodinia refined or obscured: Palaeomagnetism of the Malani Igneous Suite (NW India); Precamb. Res. 108 319–333.

    Article  Google Scholar 

  • Trivedi J R, Gopalan K and Valdiya K S 1984 Rb–Sr ages of granitic rocks within the Lesser Himalayan nappes, Kumaon, India; J. Geol. Soc. India 25 451–464.

    Google Scholar 

  • Ueda K, Jacobs J, Thomas R J, Kosler J, Horstwood M S A, Wartho J-A, Jourdan F, Emmel B and Matola R 2012 Post-collisional high-grade metamorphism, orogenic collapse, and differential cooling of the East African orogen of northeast Mozambique; J. Geol. 120 507–530.

    Article  Google Scholar 

  • Van Lente B, Ashwal L D, Pandit M K, Bowring S A and Torsvik T H 2009 Neoproterozoic hydrothermally altered basaltic rocks from Rajasthan, northwest India: Implications for late Precambrian tectonic evolution of the Aravalli Craton; Precamb. Res. 170 202–222.

    Article  Google Scholar 

  • Wiedenbeck M, Goswami J N and Roy A B 1996 Stabilisation of the Aravalli craton of northwestern India at 2.5 Ga: An ion probe zircon study; Chem. Geol. 129 325–340.

    Article  Google Scholar 

  • Windley B F, Razafiniparany A, Razakamanana T and Ackermand D 1994 Tectonic framework of the Precambrian of Madagascar and its Gondwana connections: A review and reappraisal; Geol. Rund. 83 642–659.

    Article  Google Scholar 

  • Yoshida M and Upreti B N 2006 Neoproterozoic India within East Gondwana: Constraints from recent geochronologic data from Himalaya; Gondwana Res. 10 349–356.

    Article  Google Scholar 

  • Zeitler P K 1987 Argon diffusion in partially degassed alkaline feldspar: Insights from 40Ar/39Ar analysis; Chem. Geol. 65 167–181.

    Article  Google Scholar 

Download references

Acknowledgements

Field work was supported by the Industrial Research and Consultancy Centre (IRCC), IIT Bombay grant 03IR014 to Sheth and a contingency grant from the University Grants Commission, Central Region Office, Bhopal, to Sharma. Sen was supported by a research fellowship from the Council of Scientific and Industrial Research (CSIR), Govt. of India. Pande acknowledges grant No. IR/S4/ESF-04/2003 from the Department of Science and Technology (Govt. of India) towards the development of the IIT Bombay-DST National Facility for 40Ar–39Ar Geo-thermochronology. Sapna Shinde and L S Mombasawala are thanked for help with the argon work. The authors also thank S Balakrishnan, T K Biswal, Aswini Kumar Choudhary, Ernst Hegner, George Mathew, and Malay Mukul for discussions, and two anonymous reviewers and the Associate Editor Talat Ahmad for helpful critical reviews which improved the manuscript.

Appendix 1(a) Argon isotopic composition and apparent ages of sample Sind 03WR (Basalt whole rock) at different temperature steps. The errors in ages are without and with (bracketed) errors in J. The data are interference, decay and mass fractionation corrected. J value is 0.002791 ± 0.000015.
Appendix 1(b). Argon isotopic composition and apparent ages of sample Sind 04WR (Rhyolite whole rock) at different temperature steps. The errors in ages are without and with (bracketed) errors in J. The data are interference, decay and mass fractionation corrected. J value is 0.002729 ± 0.000015.
Appendix 1(c). Argon isotopic composition and apparent ages of sample Sind 04P (Rhyolite Alkali Feldspar phenocryst) at different temperature steps. The errors in ages are without and with (bracketed) errors in J. The data are interference, decay and mass fractionation corrected. J value is 0.002819 ± 0.000011.
Appendix 1(d) Argon isotopic composition and apparent ages of sample Sind 08P (Rhyolite Alkali Feldspar phenocryst) at different temperature steps. The errors in ages are without and with (bracketed) errors in J. The data are interference, decay and mass fractionation corrected. J value is 0.002619 ± 0.000011.
Appendix 1(e) Argon isotopic composition and apparent ages of sample Sind 11P (Feldspar Porphyry Dyke Alkali Feldspar phenocryst) at different temperature steps. The errors in ages are without and with (bracketed) errors in J. The data are interference, decay and mass fractionation corrected. J value is 0.002853 ± 0.000011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HETU C SHETH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

SEN, A., PANDE, K., SHETH, H.C. et al. An Ediacaran–Cambrian thermal imprint in Rajasthan, western India: Evidence from 40Ar–39Ar geochronology of the Sindreth volcanics. J Earth Syst Sci 122, 1477–1493 (2013). https://doi.org/10.1007/s12040-013-0359-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-013-0359-y

Keywords

Navigation