Skip to main content
Log in

Diffusion of 40Ar in hornblende

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Measured radiogenic 40Ar loss from two compositionally contrasting hornblendes following isothermal-hydrothermal treatment have provided model diffusion coefficients in the temperature range of 750° C to 900° C. Eight experiments using a hornblende (77–600) with a Mg/(Mg +Fe) ratio of 0.72 yield a linear array on an Arrhenius plot with a slope corresponding to an activation energy of 66.1 kcal-mol−1 and a frequency factor of 0.061 cm2-sec−1, assuming spherical geometry for the mineral aggregate. Five experiments undertaken on a hornblende (M Mhb-1) with a Mg/(Mg+Fe) ratio of 0.36 show similar behavior to the Mgrich sample, suggesting that the diffusivity of Ar in hornblendes is not sensitive to the Mg/Fe ratio.

These data are consistent with kinetic information obtained from a geological experiment using the thermal effect of a granitoid intrusion. Together these data yield an activation energy of 64.1±1.7 kcal-mol−1 and a frequency factor of 0.024± 0.0530.011 cm2-sec−1. For a hornblende with an effective diffusion radius of 80 μm, these diffusion parameters predict closure temperatures between 578° C and 490° C for cooling rates in the range 500 to 5° C-Ma−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander EC, Mickelson GM, Lanphere MA (1978) MMhb-1: a new 40Ar/39Ar dating standard. US Geol Surv Open-file Rep 78–701:6–8

    Google Scholar 

  • Amirkhanov KhI, Bartnitskiy EN, Brant SB, Voitkevich GV (1959) The migration of argon and helium in certain rocks and minerals. Acad Navk SSSR Doklady 126:394–395

    Google Scholar 

  • Batyrmurzayev AS, Salavtidinova BSh, Gargetsev IO (1971) Migration of radiogenic argon in hornblendes. Akad Nauk SSSR, lav Ser Geol 2:128–131

    Google Scholar 

  • Batyrmurzayev AS, Voronovskiy SN (1976) Comparative study of desorption and diffusion of radiogenic Ar in some minerals. In: Vinagradov (ed) Aklual'nyye voprosy sovremennoy Geokhronalagii, Moscow, pp 157–168

  • Berger GW, York D (1981a) Geothermometry from 40Ar/39Ar dating experiments. Geochim Cosmochim Acta 45:795–812

    Article  Google Scholar 

  • Berger GW, York D (1981b) 40Ar/39Ar dating of the Thanet gabbro, Ontario: Looking through the Grenvillian metamorphic veil and implications for paleomagnetism. Can J Earth Sci 18:226–273

    Google Scholar 

  • Berger GW, York D (1979) 40Ar/39Ar dating of multicomponent magnetizations in the Archean Shelley Lake granite, northwestern Ontario. Can J Earth Sci 16:1933–1941

    Google Scholar 

  • Berger GW, York D, Dunlop DJ (1979) Calibration of Grenvillian paleopoles by 40Ar/39Ar dating. Nature 277:46–48

    Google Scholar 

  • Brandt SB, Smirnov VN, Lapides IL, Volkova NV, Kovalenko VI (1967). Radiogenic argon as geochemical indicator of hydrothermal stability of some minerals. Geokhimiya 8:1010–1012

    Google Scholar 

  • Crank J (1975) The Mathematics of Diffusion. Oxford Press, 2nd ed, 414 pp

  • Dodson M (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol 40:259–274

    Google Scholar 

  • Dodson MH (1975) Kinetic processes and thermal history of rocks. Carnegic Inst Washington Yearb 74:210–217

    Google Scholar 

  • Dodson MH (1976) Kinetic processes and thermal history of slowly cooling solids. Nature 259:551–553

    Google Scholar 

  • Dodson MH (1979) Theory of cooling ages. In: Jäger E, Hunziker JC (eds) Lectures in isotope geology. Springer-Verlag, pp 194–202

  • Evernden JF, Curtis GH, Kistler RW, Obradovich J (1960) Argon diffusion in glauconite, microcline, sanidine, leucite and phlogopite. Am J Sci 258:583–604

    Google Scholar 

  • Foland KA (1974) 40Ar diffusion in homogeneous orthoclase and an interpretation of Ar diffusion in K-feldspar. Geochim Cosmochim Acta 38:151–168

    Article  Google Scholar 

  • Gallager KJ (1965) The effect of particle size distribution on the kinetics of diffusion reactions in powders. Proc 5th Int Sym on the Reactivity of Solids. Elsevier, pp 192–203

  • Gerling EK, Kol'tsova TV, Petrov BV, Zul'fikarova ZK (1968) On the suitability of amphiboles for age determination by the K-Ar method. Geochem Int 2:148–154

    Google Scholar 

  • Gerling EK, Petrov BV, Kol'tsova TV (1966) A comparative study of the activation energy of argon liberation and dehydration energy in amphiboles and biotites. Geokhimiya 4:379–389

    Google Scholar 

  • Giletti BJ (1974a) Diffusion related to geochronology. In: Hofmann AW et al (eds) Geochemical transport and kinetics. Carnegie Publ 634:61–76

  • Giletti BJ (1974b) Studies in diffusion I: Ar in phologopite mica. In: Hofmann AW et al (eds) Geochemical transport and kinetics. Carnegie Publ 634:107–115

  • Hanson GN, Gast PW (1967) Kinetic studies in contact metamorphic zones. Geochim Cosmochim Acta 31:1119–1153

    Google Scholar 

  • Harrison TM (1980) Thermal histories from the 40Ar/39Ar age spectrum method. PhD thesis, Australian National University, Canberra, 257 pp

    Google Scholar 

  • Harrison TM, Armstrong RL, Naeser CW, Karakal JE (1979) Geochronology and thermal history of the Coast Plutonic Complex, near Prince Rupert, BC. Can J Earth Sci 16:400–410

    PubMed  Google Scholar 

  • Harrison TM, McDougall I (1981) Excess 40Ar in metamorphic rocks from Broken Hill, New South Wales: Implications for 40Ar/39Ar age spectra and the thermal history of the region. Earth Planet Sci Lett 55:123–149

    Article  Google Scholar 

  • Harrison TM, McDougall I (1980a) Investigations of an intrusive contact, northwest Nelson, New Zealand — I. Thermal, chronological and isotopic constraints. Geochim Cosmochim Acta 44:1985–2003

    Article  Google Scholar 

  • Harrison TM, McDougall I (1980b) Investigations of an intrusive contact, northwest Nelson, New Zealand — II. Diffusion of radiogenic and excess 40Ar in hornblende revealed by 40Ar/39Ar age spectrum analysis. Geochim Cosmochim Acta 44:2005–2020

    Article  Google Scholar 

  • Hart SR (1964) The petrology and isotopic-mineral age relations of a contact zone in the Front Ranges, Colorado. J Geol 72:493–525

    Google Scholar 

  • Hart SR (1960) Some diffusion measurements relating to the K-Ar dating method. In: Variations in isotopic abundances of Sr, Ca, and Ar and related topics. USAEC Contract AT(30-1)-1381. MIT, pp 87–130

  • Jain SC (1958) Simple solutions of the partial differential equation for diffusion (or heat conduction). Proc R Soc London 243:359–374

    Google Scholar 

  • Kotlovskaya FI (1964) Retention of radiogenic argon by hornblende. Geokhimiya 8:823–830

    Google Scholar 

  • Kotlovskaya FI, Tovarenko KA (1964) Study of the mechanism of radiogenic argon loss by amphiboles and biotite with heating. Geol Zh Ukr SSSR 24:52–58

    Google Scholar 

  • Musset AE (1969) Diffusion measurements and the potassium-argon method of dating. Geophys J R Astron Soc 18:257–303

    Google Scholar 

  • O'Nions RI, Smith DGW, Baadsgaard H, Morton RD (1969) Influence of chemical composition on argon retentivity in metamorphic calcic amphiboles from south Norway. Earth Planet Sci Lett 5:339–345

    Google Scholar 

  • Rudert V, Chou I-M, Eugster HP (1976) Temperature gradients in rapid-quench cold-seal pressure vessels. Am Mineral 61:1012–1015

    Google Scholar 

  • Tetley NW (1978) Geochronology by the 40Ar/39Ar technique using HIFAR reactor. PhD thesis. Australian National University, Canberra, 287 pp

    Google Scholar 

  • Turner G (1968) The distribution of potassium and argon in chondrites. In: Ahrens LH (ed) Origin and distribution of the elements. Pergamon, pp 387–398

  • Westcott MR (1966) Loss of argon from biotite in a thermal metamorphism. Nature 210:83–84

    Google Scholar 

  • York D (1969) Least squares fitting of a straight line with correlated errors. Earth Planet Sci Lett 5:320–324

    Google Scholar 

  • Zimmerman J-C (1972) Water and gas in the main silicate families: Distribution and application to geochronology and petrogenesis. Sci Terre Mem, 188 pp

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mark Harrison, T. Diffusion of 40Ar in hornblende. Contr. Mineral. and Petrol. 78, 324–331 (1982). https://doi.org/10.1007/BF00398927

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00398927

Keywords

Navigation