Skip to main content
Log in

A combined surface plasmonic and isotope-selective spectroscopic study toward a deeper understanding of real-time enzymatic urea hydrolysis

  • REGULAR ARTICLE
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

We employed the wavelength-interrogated surface plasmon resonance (SPR) method to characterize the real-time kinetics of urea-urease hydrolysis reaction in response to a CO2-free N2 environment and CO2-enriched ambient reaction medium. We established that a simple label-free SPR probe could accurately extract kinetic parameters from the nature of the sharp jump of the SPR wavelength shift in the reaction profile. The kinetic analysis showed that CO2 production increases with increasing reaction time irrespective of CO2-free N2 or CO2-enriched reaction environment. We also explored the essential insights into the isotopic fractionations of 12CO2, 13CO2, 12C18O16O in the reaction medium utilizing integrated cavity output spectroscopy. The plasmonic system measured the reaction rate in the order of 10-7 M/s for urea species in the presence of the urease enzyme. This study deepens our understanding of plasmonic-based enzymatic urea hydrolysis in real time and opens a new way to quantify chemical reaction kinetics for various other systems.

Graphical abstract

This is the first detailed experimental investigation of the real-time kinetics of urea-urease hydrolysis reaction exploiting wavelength-interrogated surface plasmon resonance method in response to produced CO2 in the CO2-free N2 environment and CO2-enriched ambient reaction medium utilizing integrated cavity output spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Graham D and Miftahussurur M 2018 Helicobacter pylori urease for diagnosis of Helicobacter pylori infection: A mini review J. Adv. Res. 13 51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tabatabai M and Bremner J 1972 Assay of urease activity in soils Soil Biol. Biochem. 4 479

    Article  CAS  Google Scholar 

  3. Qin Y and Cabral J 2002 Properties and Applications of Urease Biocatal. Biotransform. 20 1

    Article  CAS  Google Scholar 

  4. Ran D and Kawasaki S 2016 Effective use of plant-derived urease in the field of geoenvironmental/geotechnical engineering J. Civ. Environ. Eng. 6 1

    Google Scholar 

  5. Maithani S, Pal M, Maity A and Pradhan M 2017 Isotope selective activation: a new insight into the catalytic activity of urease RSC Adv. 7 31372

    Article  CAS  Google Scholar 

  6. Wrobel M et al. 2012 pH Wave-front propagation in the urea-urease reaction Biophys. J. 103 610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Paliwal A, Tomar M and Gupta V 2019 Refractive index sensor using long-range surface plasmon resonance with prism coupler Plasmonics 14 375

    Article  CAS  Google Scholar 

  8. Li J, Han D, Zeng J, Deng J, Hu N and Yang J 2020 Multi-channel surface plasmon resonance biosensor using prism-based wavelength interrogation Opt. Express 28 14007

    Article  CAS  PubMed  Google Scholar 

  9. Ibrahim J, Masri M, Verrier I, Kampfe T, Veillas C, Celle F, et al. 2019 Surface plasmon resonance based temperature sensors in liquid environment Sensors 19 3354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fisher R and Fivash M 1994 Surface plasmon resonance-based methods for measuring the kinetics and binding affinities of biomolecular interactions Curr. Opin. Biotechnol. 5 389

    Article  CAS  PubMed  Google Scholar 

  11. Homola J 2003 Present and future of surface plasmon resonance biosensors Anal. Bioanal. Chem. 377 528

    Article  CAS  PubMed  Google Scholar 

  12. Myszka D 1997 Kinetic analysis of macro molecular interactions using surface plasmon resonance biosensors Curr. Opin. Biotechnol. 8 50

    Article  CAS  PubMed  Google Scholar 

  13. Wang X, Ma M, Wang X and Wang S 2020 Surface plasmon resonance sensors for concentration and reaction kinetic detections. https://doi.org/10.5772/intechopen.92549. In: Analytical Chemistry - Advancement, Perspectives and Applications A Nanda Srivastva (Ed.) IntechOpen; 2021. https://doi.org/10.5772/intechopen.87743

  14. Yang D, Fan J, Cao F, Deng Z, Pojmanb J and Ji L 2019 Immobilization adjusted clock reaction in the urea–urease–H+ reaction system RSC Adv. 9 3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Menon P, Said F, Mei G, Mohamed M, Zain A, Shaari S and Majlis B 2019 High sensitivity Au-based Kretschmann surface plasmon resonance sensor for urea detection Sains Malays. 48 1179

    Article  CAS  Google Scholar 

  16. Menon P, Said F, Mei G, Berhanuddin D, Umar A, Shaari S and Majlis B 2018 Urea and creatinine detection on nano laminated gold thin film using Kretschmann based surface plasmon resonance biosensor PLoS ONE 13 e0201228

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vikas, Gupt S, Tejavath K and Verma R 2020 Urea detection using bio-synthesized gold nanoparticles: an SPR/LSPR based sensing approach realized on optical fiber Opt. Quant. Electron 52 278

    Article  CAS  Google Scholar 

  18. Chauhan M, Maddi C, Jha A, Subramanian V and Valdastri P 2019 Characterization of Urease enzyme using Raman and FTIR Spectroscopy in Biophotonics Congress: Optics in the Life Sciences Congress 2019 (BODA,BRAIN,NTM,OMA,OMP), OSA Technical Digest (Optica Publishing Group, 2019), paper JT4A.46

  19. Chauhan M, Jha A, Subramanian V and Valdastri P 2020 PH characterization of urease using Raman Spectroscopy in Biophotonics Congress: Biomedical Optics 2020 (Translational, Microscopy, OCT, OTS, BRAIN), OSA Technical Digest (Optica Publishing Group, 2020), paper JTh2A.14.

  20. Maithani S, Maity A, Pal M, Bhattacharya S, Banik G, Ghosh C, et al. 2019 Isotopic evidences of the preferential coordination between 12CO2 and urease enzyme Chem. Phys. 520 21

    Article  CAS  Google Scholar 

  21. Banerjee J and Ray M 2017 Unconventional generation of optical vortex beam using axicon pair and a birefringent lens: validation of plasmonic excitation Appl. Phys. Lett. 110 181105

    Article  Google Scholar 

  22. Homola J, Yee S and Gauglitz G 1999 Surface plasmon resonance sensors: review Sens. Actuat. B 54 3

    Article  CAS  Google Scholar 

  23. Bera M, Banerjee J and Ray M 2015 Surface plasmon resonance mediated fringe modulation using a birefringent lens creating radial shearing environment J. Opt. Soc. Am. B 32 961

    Article  CAS  Google Scholar 

  24. Zhang J, Zhang L and Xu W 2012 Surface plasmon polaritons: physics and applications J. Phys. D Appl. Phys. 45 113001

    Article  Google Scholar 

  25. Zerner B 1991 Recent advances in the chemistry of an old enzyme, urease Bioorg. Chem. 19 116

    Article  CAS  Google Scholar 

  26. Karplus P, Pearson M and Hausinger R 1997 70 Years of Crystalline Urease: What Have We Learned? Acc. Chem. Res. 30 330

    Article  CAS  Google Scholar 

  27. Lei T, Gu Q, Guo X, Ma J, Zhang Y and Sun X 2018 Urease activity and urea hydrolysis rate under coupling effects of moisture content, temperature, and nitrogen application rate Int. J. Agric. Biol. Eng. 11 132

    Google Scholar 

  28. Yesudasu V, Pradhan H S and Pandya R J 2021 Recent progress in surface plasmon resonance based sensors: A comprehensive review Heliyon 7 e06321

  29. Maity A, Pal M, Som S, Maithani S, Chaudhuri S and Pradhan M 2017 Natural 18O and 13C-urea in gastric juice: a new route for non-invasive detection of ulcers Anal. Bioanal. Chem. 409 193

    Article  CAS  PubMed  Google Scholar 

  30. Matthews D E and Downey R S 1984 Measurement of urea kinetics in humans: a validation of stable isotope tracer methods Am. J. Physiol. 246 E519

Download references

Acknowledgements

J. Banerjee would like to acknowledge the Science & Engineering Research Board, Government of India, for funding the project (PDF/2020/001422).

Author information

Authors and Affiliations

Authors

Contributions

Jayeta Banerjee: Conceptualization, Methodology, Validation, Formal Analysis, Investigation, Writing – original draft, Manik Pradhan: Supervision, Writing - Review & Editing, Funding Acquisition.

Corresponding author

Correspondence to Manik Pradhan.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 135 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, J., Pradhan, M. A combined surface plasmonic and isotope-selective spectroscopic study toward a deeper understanding of real-time enzymatic urea hydrolysis. J Chem Sci 135, 53 (2023). https://doi.org/10.1007/s12039-023-02175-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-023-02175-0

Keywords

Navigation