Skip to main content
Log in

Refractive Index Sensor Using Long-Range Surface Plasmon Resonance with Prism Coupler

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Long-range surface plasmon resonance (LRSPR)-based sensors exhibit high sensitivity as compared to the conventional SPR sensors due to low losses. A high refractive index prism and low refractive index dielectrics are required to excite long-range surface plasmon (LRSP) mode. In this work, a symmetrical structure consisting of metal (Au) layer sandwiched between the two similar refractive index dielectrics has been utilized to excite LRSPR modes. Two dielectrics, i.e., LiF and MgF2 thin films have been chosen for glucose sensing. Theoretical simulations for optimizing the thickness of two dielectrics have been carried out. Highly sensitive refractive index sensors based on LRSPR have been developed using the two dielectric thin films and their sensitivities have been compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang D, Deng H, Yang P, Chu J (2010) Optical and electrical properties of multiferroic bismuth ferrite thin films fabricated by sol–gel technique. Mat Lett 64:2233–2235

    Article  CAS  Google Scholar 

  2. Berini P (2001) Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures. Phys Rev B 63:125417

    Article  CAS  Google Scholar 

  3. Lamprecht B, Krenn JR, Schider G, Ditlbacher H, Salerno M, Felidj N, Leitner A, Aussenegg FR (2001) Surface plasmon propagation in microscale metal stripes. Appl Phys Lett 79:51–53

    Article  CAS  Google Scholar 

  4. Degiron A, Smith D (2006) Numerical simulations of long-range plasmons. Opt Exp 14:1611–1625

    Article  Google Scholar 

  5. Huang W, Zhou Y, Jiayan D, Deng Y, Yi H (2018) Versatile visual logic operations based on plasmonic switching in label-free molybdenum oxide nanomaterials. Anal Chem 90:2384–2388

    Article  CAS  PubMed  Google Scholar 

  6. Huang W, Zhou Y, Jiayan D, Deng Y, Yi H (2018) A negative feedback loop based on proton-driven in situ formation of plasmonic molybdenum oxide nanosheets. Phys Chem Chem Phys 20:4347–4350

    Article  CAS  PubMed  Google Scholar 

  7. Li R, An H, Huang W, He Y (2018) Molybdenum oxide nanosheets meet ascorbic acid: tunable surface plasmon resonance and visual colorimetric detection at room temperature. Sensors Actuators B Chem 259:59–63

    Article  CAS  Google Scholar 

  8. Boltasseva A, Nikolajsen T, Leosson K, Kjaer K, Larsen MS, Bozhevolnyi SI (2005) Integrated optical components utilizing long-range surface plasmon polaritons. J Lightwave Tech 23:413–422

    Article  Google Scholar 

  9. Okamoto T, Simonen J, Kawata S (2008) Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach. Phys Rev B 77:115425

    Article  CAS  Google Scholar 

  10. Dostálek J, Roskamp RF, Knoll W (2009) Coupled long range surface plasmons for the investigation of thin films and interfaces. Sensors Actuators B Chem 139:9–12

    Article  CAS  Google Scholar 

  11. Kasry A, Knoll W (2006) Long range surface plasmon fluorescence spectroscopy. Appl Phys Lett 89:101106

    Article  CAS  Google Scholar 

  12. Nenninger GG, TobisÏka P, Homola J, Yee SS (2001) Long-range surface plasmons for high-resolution surface plasmon resonance sensors. Sensors Actuators B Chem 74:145–151

    Article  CAS  Google Scholar 

  13. Paliwal A, Sharma A, Tomar M, Gupta V (2014) Optical properties of WO3thin films using surface plasmon resonance technique. J Appl Phys 115:043104

    Article  CAS  Google Scholar 

  14. Ozdemir SK, Turhan-Sayan G (2003) Temperature effects on surface plasmon resonance: design considerations for an optical temperature sensor. J Lightwave Technol 21:805–814

    Article  CAS  Google Scholar 

  15. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Verlag Berlin Hiedelberg, Springer Tokyo (1988)

  16. J. D. McGee, Photoelectronic image devices, Academic press Inc. New York, USA (1972)

Download references

Acknowledgements

The authors are thankful to the Department of Science and technology (DST), Govt. of India, and University of Delhi for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paliwal, A., Tomar, M. & Gupta, V. Refractive Index Sensor Using Long-Range Surface Plasmon Resonance with Prism Coupler. Plasmonics 14, 375–381 (2019). https://doi.org/10.1007/s11468-018-0814-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0814-3

Keywords

Navigation