Skip to main content
Log in

Quantum chemical study of molecular hydration of phenylxylopyranose sugar

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The explicit hydration of phenyl substituted xylopyranose containing up to n = 1 to 10 water molecules were studied by using Møller-Plesset second-order perturbation theory (MP2) by employing aug-cc-pVDZ as a basis set. Total interaction energies at the complete basis set limit for the phenylxylopyranose-water clusters were also calculated at MP2 level of theory. The nature of phenylxylopyranose-water interaction was studied by using LMO-EDA analysis, and it was found here that, similar to xylofuranose and xylopyranose, the interaction was observed to be mainly stabilized by electrostatic and exchange contributions. The phenyl substitution on xylopyranose increases the water binding capacity only for smaller hydrates, but for larger hydrates, the magnitude of interaction energies was found to be lowered when compared to unsubstituted xylopyranose hydrates. The calculated Phenyl--Oxylose stretching frequency shows red shift, whereas the PhenylO--xylose frequency shows a blue shift, in each size of complexes, with respect to isolated molecules. However, in dihydrate complex, these stretching frequencies show a decrease in frequency value when compared to respective monohydrate values. This is due to the interaction of water molecules with the bridge O atom between phenyl ring and xylose sugar.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Varki A 1993 Biological Roles of Oligosaccharides: All of the Theories are Correct Glycobiology 3 97

    Article  CAS  Google Scholar 

  2. Lis H and Sharon N 1996 Lectins: Carbohydrate-Specific Proteins that Mediate Cellular Recognition Chem. Rev. 98 683

    Google Scholar 

  3. Gabius H-J, André S, Jiménez-Barbero J and Rüdiger H 2004 Chemical Biology of the Sugar Code Chem. Bio. Chem. 5 740

    CAS  Google Scholar 

  4. Gadre SR, Yeole SD and Sahu N 2013 Quantum Chemical Investigations on Molecular Clusters Chem. Rev. 114 12132

    Google Scholar 

  5. Jeffrey GA and Saenger W 1991 Hydrogen Bonding in Biological Structures (Springer: Berlin)

    Book  Google Scholar 

  6. (a) Gadre S R, Babu K and Rendell A P 2000 Electrostatics for Exploring Hydration Patterns of Molecules 3 Uracil J. Phys. Chem. A 104 8976; (b) Kulkarni A D, Babu K, Gadre S R and Bartolotti L J 2004 Exploring Hydration Patterns of Aldehydes and Amides Ab Initio Investigations J. Phys. Chem. A 108 2492; (c) Deshmukh M M, Sastry N V and Gadre S R 2004 Molecular interpretation of water structuring and destructuring effects: Hydration of alkanediols J. Chem. Phys. 121 12402

  7. (a) Gadre S R, Deshmukh M M and Kalagi R P 2004 Quantum chemical investigations on explicit molecular hydration Proc. Ind. Nat. Sci. Acad. 70A 709; (b) Kulkarni A D 2019 Molecular Hydration of Carbonic Acid: Ab Initio Quantum Chemical and Density Functional Theory Investigation J. Phys. Chem. A 123 5504

  8. Simons J P, Jockusch R A, Çarçabal P, Hünig I, Kroemer R T, Macleod N A and Snoek L C 2005 Sugars in the gas phase. Spectroscopy, conformation, hydration, co-operativity and selectivity Int. Rev. Phys Chem. 24 489

  9. Simons JP, Davis BG, Cacinero EJ, Gomblin DP and Cristina SE 2009 Conformational change and selectivity in explicitly hydrated carbohydrates Tetrahedron Assym. 20 718

    CAS  Google Scholar 

  10. Dwek R 1996 Glycobiology: Toward Understanding the Function of Sugars Chem. Rev. 96 683

    CAS  Google Scholar 

  11. Helenius A and Aebi M 2004 Roles of N-Linked Glycans in the Endoplasmic Reticulum Annu. Rev. Biochem. 73 1019

    Article  CAS  Google Scholar 

  12. Imberty A and Pere´z S, 2000 Structure, Conformation, and Dynamics of Bioactive Oligosaccharides: Theoretical Approaches and Experimental Validations Chem. Rev. 100 4567

    CAS  Google Scholar 

  13. Petrescu A J, Milac A L, Petrescu S M, Dwek R A and Wormald M R 2004 Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding Glycobiology 14 103

  14. Wormald MR, Petrescu AJ, Pao YL, Glithero A and Elliot T 2002 Conformational Studies of Oligosaccharides and Glycopeptides: Complementarity of NMR, X-ray Crystallography, and Molecular Modelling Chem. Rev. 102 371

    CAS  Google Scholar 

  15. Krautler V, Müller M and Hunenberger PH 2007 Conformation, dynamics, solvation and relative stabilities of selected β-hexopyranoses in water: a molecular dynamics study with the gromos 45A4 force field Carbohydr. Res. 342 2097

    Google Scholar 

  16. Hunig I, Painter A, Jockusch RA, Carcabal P, Marzluff EM, Snoek LC, et al. 2005 Adding water to sugar: A spectroscopic and computational study of α- and β-phenylxyloside in the gas phase Phys. Chem. Chem. Phys. 7 2474

    Article  Google Scholar 

  17. Mayorkas N, Rudic S, Cocinero EJ, Davis BG and Simons JP 2011 Carbohydrate hydration: heavy water complexes of α and β anomers of glucose, galactose, fucose and xylose Phys. Chem. Chem. Phys. 13 18671

    Article  CAS  Google Scholar 

  18. Çarcabal P, Patsias T, Hünig I, Liu B, Kaposta EC, Snoek LC, et al. 2006 Spectral signatures and structural motifs in isolated and hydrated monosaccharides: phenyl α- and β-L-fucopyranoside Phys. Chem. Chem. Phys. 8 129

    Article  Google Scholar 

  19. Carcabal P, Cocinero EJ and Simons JP 2013 Binding energies of micro-hydrated carbohydrates: measurements and interpretation Chem. Sci. 4 1830

    CAS  Google Scholar 

  20. Jin L, Simons JP and Gerber RB 2012 Monosaccharide-Water Complexes: Vibrational Spectroscopy and Anharmonic Potentials J. Phys. Chem. A 116 11088

    Article  CAS  Google Scholar 

  21. Shiraga K, Ogawa Y, Kondo N, Irisawa A and Imamura M 2013 Evaluation of the hydration state of saccharides using terahertz time-domain attenuated total reflection spectroscopy Food Chem.140 315

    CAS  PubMed  Google Scholar 

  22. Shiraga K, Suzuki T, Kondo N, De Baerdemaeker J and Ogawa Y 2015 Quantitative characterization of hydration state and destructuring effect of monosaccharides and disaccharides on water hydrogen bond network Carbohydr. Res. 406 46

    CAS  Google Scholar 

  23. Lee SL and Debenedetti PG 2005 A Computational Study of Hydration, Solution Structure, and Dynamics in Dilute Carbohydrate Solutions J. Chem. Phys. 122 204511

    Article  Google Scholar 

  24. Pandey P and Mallajosyula SS 2016 Influence of Polarization on Carbohydrate Hydration: A Comparative Study Using Additive and Polarizable Force Fields J. Phys. Chem. B 120 6621

    Article  CAS  Google Scholar 

  25. Suzuki T 2008 The hydration of glucose: the local configuration in sugar-water hydrogen bond Phys. Chem. Chem. Phys. 10 96

    Article  CAS  Google Scholar 

  26. Momany F and Schnupf U 2014 DFT optimization and DFT-MD studies of glucose, ten explicit water molecules enclosed by an implicit solvent COSMO Comp. Theor. Chem. 1029 57

    Article  CAS  Google Scholar 

  27. Koli AR and Yeole SD 2019 Understanding the interaction between hydrogen bonded complexes of xylose and water: quantum chemical investigation J. Chem. Sci. 132 35

    Article  Google Scholar 

  28. Koli AR and Yeole SD 2020 Molecular hydration of carbohydrates: quantum chemical study of xylofuranose–(H2O)n clusters Theor. Chem. Acc. 139 115

    Article  CAS  Google Scholar 

  29. Yeole SD 2021 Ab initio Quantum Chemical Study of Microhydration of Xylopyranose Sugar Comp. Theor. Chem. 1206 113466

    Article  CAS  Google Scholar 

  30. Dunning Jr. T H 1989 Gaussian basis sets for use in correlated molecular calculations. The atoms boron through neon and hydrogen J. Chem. Phys. 90 1007

  31. Yeole SD and Gadre SR 2011 Molecular cluster building algorithm: Electrostatic guidelines and molecular tailoring approach J. Chem. Phys. 134 084111

    Article  Google Scholar 

  32. Josh KVJ and Gadre SR 2008 Electrostatic guidelines and molecular tailoring for density functional investigation of structures and energetics of (Li)n clusters J. Chem. Phys. 129 164314

    Article  Google Scholar 

  33. Gadre SR and Pindlik SS 1997 Complementary electrostatics for the study of DNA base pair interactions J. Phys. Chem. 109 3298

    Article  Google Scholar 

  34. Pundlik SS and Gadre SR 1997 Structure and stability of DNA base trimers: An electrostatic approach J. Phys. Chem. B 101 9657

    Article  CAS  Google Scholar 

  35. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X, Caricato M, Marenich A V, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V G, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery J A, Jr, Peralta J E, Ogliaro F, Bearpark M J, Heyd J J, Brothers E N, Kudin K N, Staroverov V N, Keith T A, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B and Fox D J 2016 Gasussian 16 Revision B.01, Gaussian, Inc., Wallingford CT.

  36. Peifeng S and Hui L 2009 Energy Decomposition analysis of Covalent bonds and intermolecular interactions J. Chem. Phys. 131 014102

    Article  Google Scholar 

  37. Allouche SR 2011 Gabedit-A graphical user interface for computational chemistry softwares J. Comput. Chem. 32 174

    Article  CAS  Google Scholar 

  38. Halkier A, Klopper W, Helgaker T, Jorgensen P and Taylor PR 1999 Basis set convergence of the interaction energy of hydrogen-bonded complexes J. Chem. Phys. 111 9157

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SDY is grateful to SERB, DST, New Delhi, for the financial support through the Early Career Research Award (ECR/2017/000321). The author is also thankful to Professor Shridhar R. Gadre for his valuable and constructive suggestions on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin D Yeole.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeole, S.D. Quantum chemical study of molecular hydration of phenylxylopyranose sugar. J Chem Sci 134, 95 (2022). https://doi.org/10.1007/s12039-022-02100-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-022-02100-x

Keywords

Navigation