Skip to main content
Log in

An insight into hydration structure of sodium glycinate from ab initio quantum chemical study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The hydration structure of sodium glycinate (Na+GL) is probed by the Monte-Carlo multiple minimum (MCMM) method combined with quantum mechanical (QM) calculations at the MP2/6-311++G(d,p) level. In the gas phase, the energy of [Na+GL]β is more than 30 kJ mol−1 higher than [Na+GL]α. With higher degrees of hydration, our results indicate that the most stable conformers of [Na+GL]∙(H2O)8 were derived from [Na+GL]β instead of [Na+GL]α. The stable conformers determined by the conductor-like polarizable continuum model (CPCM) also show that [Na+GL]β is more stable than [Na+GL]α in the liquid phase. By analyzing the hydration process, water…water hydrogen bonding interaction will be more preferable than ion…water interaction as the number of water molecules increases. According to the electronic density at the bond critical point on the Na-X bonds (X = O1, O2, N) in the low-energy conformers, Na+GL will be dissociated as Na+ and GL in the bulk water, which is not predicted by the CPCM model. The structure features and the charge redistribution of Na+GL will provide a physical explanation for the weakening Na-O1 interaction.

Hydration structure of sodium glycinate from ab initio quantum chemical study

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Marino T, Russo N, Toscano M (2003) Interaction of Li+, Na+, and K+ with the proline amino acid. Complexation modes, potential energy profiles, and metal ion affinities. J Phys Chem B 107:2588–2594

    Article  CAS  Google Scholar 

  2. Russo N, Toscano M, Grand AE (2001) Bond energies and attachments sites of sodium and potassium cations to dna and rna nucleic acid bases in the gas phase. J Am Chem Soc 123:10272–10279

    Article  CAS  Google Scholar 

  3. Dunbar RC, Steill JD, Polfer NC, Oomens J (2013) Metal cation binding to gas-phase pentaalanine: divalent ions restructure the complex. J Phys Chem A 117:1094–1101

    Article  CAS  Google Scholar 

  4. Mazur K, Buchner R, Bonn M, Hunger J (2014) Hydration of sodium alginate in aqueous solution. Macromolecules 47:771–776

    Article  CAS  Google Scholar 

  5. Wyttenbach T, Bushnell JE, Bowers MT (1998) Salt bridge structures in the absence of solvent? The case for the oligoglycines. J Am Chem Soc 120:5098–5103

    Article  CAS  Google Scholar 

  6. Dunbar RC, Berden G, Oomens J (2013) How does a small peptide choose how to bind a metal ion? IRMPD and computational survey of CS versus Iminol binding preferences. Int J Mass spectrom 354–355:356–364

    Article  Google Scholar 

  7. Meng L, Lin Z (2014) Complexations of alkali/alkaline earth metal cations with gaseous glutamic acid. Comput Theor Chem 1039:1–10

    Article  CAS  Google Scholar 

  8. Shankara R, Kolandaivela P, Senthilkumar L (2011) Interaction studies of cysteine with Li+, Na+, K+, Be2+, Mg2+, and Ca2+ metal cation complexes. J Phys Org Chem 24:553–567

    Article  Google Scholar 

  9. Cerda BA, Wesdemiotis C (2000) Zwitterionic vs. charge-solvated structures in the binding of arginine to alkali metal ions in the gas phase. Analyst 125:657–660

    Article  CAS  Google Scholar 

  10. Schwartz CP, Uejio JS, Duffin AM, England AH, Kelly DN, Prendergast D, Saykally JR (2010) Investigation of protein conformation and interactions with salts via X-ray absorption spectroscopy. Proc Natl Acad Sci 107:14008–14013

    Article  CAS  Google Scholar 

  11. Perez-Miller S, Zou Q, Novotny MV, Hurley TD (2010) High resolution X-ray structures of mouse major urinary protein nasal isoform in complex with pheromones. Protein Sci 19:1469–1479

    Article  CAS  Google Scholar 

  12. Harano Y, Kinoshita M (2004) Large gain in translational entropy of water is a major driving force in protein folding. Chem Phys Lett 399:342–348

    Article  CAS  Google Scholar 

  13. Bandyopadhyay S, Chakraborty S, Bagchi B (2005) Secondary structure sensitivity of hydrogen bond lifetime dynamics in the protein hydration layer. J Am Chem Soc 127:16660–16667

    Article  CAS  Google Scholar 

  14. Balabin RM (2009) Conformational equilibrium in glycine: focal-point analysis and ab initio limit. Chem Phys Lett 479:195–200

    Article  CAS  Google Scholar 

  15. Yao Y, Chen D, Zhang S, Li Y, Tu P, Liu B, Dong M (2011) Building the first hydration shell of deprotonated glycine by the mcmm and ab initio methods. J Phys Chem B 115:6213–6221

    Article  CAS  Google Scholar 

  16. Wei Z, Chen D, Li Y, Zhao H, Zhu J, Liu B (2014) Ab initio investigation of the first hydration shell of protonated glycine. J Chem Phys 140:085103–085112

    Article  Google Scholar 

  17. Michaux C, Wouters J, Perpète EA, Jacquemin D (2008) Microhydration of protonated glycine: an ab initio family tree. J Phys Chem B 112:2430–2438

    Article  CAS  Google Scholar 

  18. Miller DJ, Lisy JM (2008) Hydrated alkali-metal cations: infrared spectroscopy and ab initio calculations of M+(H2O)x=2−5Ar cluster ions for M = Li, Na, K, and Cs. J Am Chem Soc 130:15381–15392

    Article  CAS  Google Scholar 

  19. Jockusch RA, Lemoff AS, Williams ER (2001) Hydration of valine—cation complexes in the gas phase: on the number of water molecules necessary to form a zwitterion. J Phys Chem A 105:10929–10942

    Article  CAS  Google Scholar 

  20. Belcastro M, Marino T, Russo N, Toscano M (2009) The role of glutathione in cadmium ion detoxification: coordination modes and binding properties—a density functional study. J Inorg Biochem 103:50–57

    Article  CAS  Google Scholar 

  21. Chang G, Guida WC, Still WC (1989) An internal-coordinate Monte Carlo method for searching conformational space. J Am Chem Soc 111:4379–4386

    Article  CAS  Google Scholar 

  22. Fariborz M, Nigel GJR, Waynel CG, Rob L, Mark L, Craig C, George C, Thomas H, Still WC (1990) Macromodel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J Comput Chem 11:440–467

    Article  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Gonzalez C, Pople JA (2004) GAUSSIAN 03, Revision C.02. Gaussian Inc, Wallingford, CT

    Google Scholar 

  24. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyser. J Comp Chem 33:580–592

    Article  Google Scholar 

  25. De Wall SL, Meadows ES, Barbour LJ, Gokel GW (2000) Synthetic receptors as models for alkali metal cation-pi binding sites in proteins. Proc Natl Acad Sci 97:6271–6276

    Article  Google Scholar 

  26. Yamashita MM, Wesson L, Eisenman G, Eisenberg D (1990) Where metal ions bind in proteins. Proc Natl Acad Sci 87:5648–5652

    Article  CAS  Google Scholar 

  27. Carney JR, Dian BC, Florio GM, Zwier TS (2001) The role of water bridges in directing the conformational preferences of 3-indole-propionic acid and tryptamine. J Am Chem Soc 123:5596–5597

    Article  CAS  Google Scholar 

  28. Carney JR, Fedorov AV, Cable JR, Zwier TS (2001) Infrared spectroscopy of H-bonded bridges stretched across the cis-amide group: I water bridges. J Am Chem Soc 105:3487–3497

    CAS  Google Scholar 

  29. Carney JR, Zwier TS (2000) The infrared and ultraviolet spectra of individual conformers of biomolecules: tryptamine. J Phys Chem A 104:8677–8688

    Article  CAS  Google Scholar 

  30. Aikens CM, Gordon MS (2006) Incremental solvation of nonionized and zwitterionic glycine. J Am Chem Soc 128:12835–12850

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China under Contract No. 21373077, NSFC-Henan Talent Training Fund under Contract No. U1304310, Talent Seed Fund of Henan University, and Natural Science Foundation of Henan Educational Committee under Contract No. 12B430001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Chen or Bo Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 10173 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Wei, Z. & Liu, B. An insight into hydration structure of sodium glycinate from ab initio quantum chemical study. J Mol Model 21, 234 (2015). https://doi.org/10.1007/s00894-015-2781-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2781-3

Keywords

Navigation