Skip to main content
Log in

Understanding the interactions between hydrogen-bonded complexes of xylose and water: Quantum Chemical Investigation

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Hydrogen-bonded complexes between xylose and water, modelled by xylofuranose…H2O complexes were explored employing ab initio quantum chemical framework. The Møller–Plesset second-order perturbation theory (MP2) in conjugation with aug-cc-pVDZ basis set, is used for investigating the H-bonding interactions. The complete basis set limit interaction energies for α-and β-xylofuranose and xylopyranose water complexes were calculated at MP2 level. It is observed that the addition of water molecule does not change the conformational structure of xylose moieties. Further water is found to interact with xylose mainly through the O atom present in a ring and its neighboring OH group. Energy decomposition analysis by LMO-EDA approach indicates that the electrostatic and exchange interactions are the two largest contributing terms to the total interaction energy for bonding between Xylose and water.

Graphic Abstract

The nature of interaction between xylose and water is investigated by means of MP2/CBS interaction energies, energy decomposition analysis, change in vibrational frequencies and electron density critical points. It was found that xylofuranose has more affinity towards water than xylopyranose form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Gadre S R, Yeole S D and Sahu N 2013 Quantum chemical investigations on molecular clusters Chem. Rev. 114 12132

    Article  Google Scholar 

  2. Jeffrey G A and Saenger W 1991 Hydrogen Bonding in Biological Structures (Berlin: Springer)

    Book  Google Scholar 

  3. (a) Gadre S R, Babu K and Rendell A P 2000 Electrostatics for Exploring Hydration Patterns of Molecules 3 Uracil J. Phys. Chem. A 104 8976; (b) Kulkarni A D, Babu K, Gadre S R and Bartolotti L J 2004 Exploring Hydration Patterns of Aldehydes and Amides  Ab Initio Investigations J. Phys. Chem. A 108 2492; (c) Deshmukh M M, Sastry N V and Gadre S R 2004 Molecular interpretation of water structuring and destructuring effects: Hydration of alkanediols J. Chem. Phys. 121 12402

  4. (a) Gadre S R, Deshmukh M M and Kalagi R P 2004 Quantum chemical investigations on explicit molecular hydration Proc. Ind. Nat. Sci. Acad. 70A 709; (b) Kulkarni A D 2019 Molecular Hydration of Carbonic Acid: Ab Initio Quantum Chemical and Density Functional Theory Investigation J. Phys. Chem. A 123 5504

  5. (a) Simons J P, Jockusch R A, Çarçabal P, Hünig I, Kroemer R T, Macleod N A and Snoek L C 2005 Sugars in the gas phase. Spectroscopy, conformation, hydration, co-operativity and selectivity Int. Rev. Phys. Chem. 24 489; (b) Simons J P, Davis B G, Cacinero E J, Gomblin D P and Cristina S E 2009 Conformational change and selectivity in explicitly hydrated carbohydrates Tetrahedron. Asymm. 20 718

  6. Dwek R 1996 Glycobiology: Toward Understanding the Function of Sugars Chem. Rev. 96 683

    Article  CAS  Google Scholar 

  7. Helenius A and Aebi M 2004 Roles of N-Linked Glycans in the Endoplasmic Reticulum Annu. Rev. Biochem. 73 1019

    Article  CAS  Google Scholar 

  8. Imberty A and Pérez S 2000 Structure, Conformation, and Dynamics of Bioactive Oligosaccharides:  Theoretical Approaches and Experimental Validations Chem. Rev. 100 4567

    Article  CAS  Google Scholar 

  9. (a) Petrescu A J, Milac A L, Petrescu S M, Dwek R A and Wormald M R 2004 Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding Glycobiology 14 103; (b) Wormald M R, Petrescu A J, Pao Y L, Glithero A and Elliot T 2002 Conformational studies of oligosaccharides and glycopeptides:  complementarity of NMR, X-ray crystallography, and molecular modelling Chem. Rev. 102 371

  10. Krautler V, Müller M and Hunenberger P H 2007 Conformation, dynamics, solvation and relative stabilities of selected β-hexopyranoses in water: a molecular dynamics study with the gromos 45A4 force field Carbohydr. Res. 342 2097

    Article  Google Scholar 

  11. Hunig I, Painter A, Jockusch R A, Carcabal P, Marzluff E M, Snoek L C, Gamblin D P, Davis B G and Simons J P 2005 Adding water to sugar: a spectroscopic and computational study of α- and β-phenylxyloside in the gas phase Phys. Chem. Chem. Phys. 7 2474

    Article  Google Scholar 

  12. Mayorkas N, Rudic S, Cocinero E J, Davis B G and Simons J P 2011 Carbohydrate hydration: heavy water complexes of α and β anomers of glucose, galactose, fucose and xylose Phys. Chem. Chem. Phys. 13 18671

    Article  CAS  Google Scholar 

  13. Çarcabal P, Patsias T, Hünig I, Liu B, Kaposta E C, Snoek L C, Gamblin D P, Davis B G and Simons J P 2006 Spectral signatures and structural motifs in isolated and hydrated monosaccharides: phenyl α- and β-L-fucopyranoside Phys. Chem. Chem. Phys. 8 129

    Article  Google Scholar 

  14. Carcabal P, Cocinero E J and Simons J P 2013 Binding energies of micro-hydrated carbohydrates: measurements and interpretation Chem. Sci. 4 1830

    Article  CAS  Google Scholar 

  15. Dunning Jr T H 1989 Gaussian basis sets for use in correlated molecular calculations. The atoms boron through neon and hydrogen J. Chem. Phys. 90 1007

    Article  CAS  Google Scholar 

  16. (a) Luque F J, Orozco M, Bhadane P K and Gadre S R 1993 SCRF calculation of the effect of water on the topology of the molecular electrostatic potential J. Phys. Chem. 97 9380; (b) Gadre S R, Kulkarni S A, Suresh C H and Shrivastava I H 1995 Basis set dependence of the molecular electrostatic potential topography. A case study of substituted benzenes Chem. Phys. Lett. 239 273; (c) Josh K V J and Gadre S R 2008 Electrostatic guidelines and molecular tailoring for density functional investigation of structures and energetics of (Li)n clusters J. Chem. Phys. 129 164314

  17. (a). Gadre S R and Pindlik S S 1997 Complementary electrostatics for the study of DNA base pair interactions J. Phys. Chem. 109 3298; (b) Pundlik S S and Gadre S R 1997 Structure and stability of DNA base trimers: an electrostatic approach J. Phys. Chem. B 101 9657; (c) Yeole S D and Gadre S R 2011 Molecular cluster building algorithm: electrostatic guidelines and molecular tailoring approach J. Chem. Phys. 134 084111

  18. (a) Pingle S S, Gadre S R and Bartolotti L J 1994 Electrostatic insights into the molecular hydration process: a case study of crown ethers J. Phys. Chem. A 102 9987; (b) Sivanesan D, Babu K, Gadre S R, Subramanian V and Ramasami T 2000 Does a stacked DNA base pair hydrate better than a hydrogen-bonded one an ab initio study J. Phys. Chem. A 104 10887

  19. Frisch, M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X, Caricato M, Marenich A V, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V G, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery J A, Jr, Peralta J E, Ogliaro F, Bearpark M J, Heyd J J, Brothers E N, Kudin K N, Staroverov V N, Keith T A, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B and Fox D J 2016 Gasussian 16 Revision B.01, Gaussian, Inc., Wallingford CT

  20. Peifeng S and Hui L 2009 Energy Decomposition analysis of Covalent bonds and intermolecular interactions J. Chem. Phys. 131 014102

    Article  Google Scholar 

  21. Schmidt M W, Baldridge K K, Boatz J A, Elbert S T, Gordon M S, Jensen J H, Koseki S, Matsunaga N, Nguyen K A, Su S, Windus T L, Dupuis M and Montgomery J A 1993 General atomic and molecular electronic structure system J. Comput. Chem. 14 1347

    Article  CAS  Google Scholar 

  22. (a) Fernández R J, López R, Ema I and Ramírez G 2005 Deformed atoms in molecules: analytical representation of atomic densities for Gaussian type orbitals J. Mol. Struct. Theochem. 727 115; (b) Yeole S D and Gadre S R 2011 Topography of scalar fields: molecular clusters and π-conjugated systems J. Phys. Chem. A 115 12769; (c) López R, Rico J F, Ramírez G, Emaa I, Zorrilla D, Kumar A, Yeole S D and Gadre S R 2017 Topology of molecular electron density and electrostatic potential with DAMQT Comput. Phys. Comm. 214 207

  23. Halkier A, Klopper W, Helgaker T, Jorgensen P and Taylor P R 1999 Basis set convergence of the interaction energy of hydrogen-bonded complexes J. Chem. Phys. 111 9157

    Article  CAS  Google Scholar 

  24. (a) Bader R F W 1990 Atom in Molecules: A Quantum Theory (Oxford: Clarendon Press); (b) Bader R F W, Nguyen-Dang T T and Tal Y 1976 Quantum topology of molecular charge distributions. II. Molecular structure and its change J. Chem. Phys. 70 4316

  25. (a) Tal Y, Bader R F W and Erkku J 1980 Structural homeomorphism between the electronic charge density and the nuclear potential of a molecular system Phys. Rev. A 21 1; (b) Gadre S R 2000 In Computational Chemistry: Review of Current Trends J Lesczynski (Ed.) (Singapore: World Scientific)

Download references

Acknowledgements

Authors are thankful to Prof. Shridhar R. Gadre and Dr. Anant D. Kulkarni, for their valuable suggestions to this manuscript. SDY is grateful to SERB, DST, New Delhi for the financial support through ECRA award (ECR/2017/000321). Authors also acknowledge the computational support by PARAM YUVA facility at CDAC Pune.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin D Yeole.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koli, A.R., Yeole, S.D. Understanding the interactions between hydrogen-bonded complexes of xylose and water: Quantum Chemical Investigation. J Chem Sci 132, 35 (2020). https://doi.org/10.1007/s12039-020-1741-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-1741-3

Keywords

Navigation