Skip to main content
Log in

Efficient bimetal loaded (Rh-Ni)/αβ-MoxC catalyst for CO2 methanation

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The catalytic CO2 methanation not only reduces the CO2 emission but also provides methane as an important basic chemical raw material. Here, we report an efficient bimetallic co-loaded catalyst (Rh-Ni)/αβ-MoXC for CO2 methanation. The CH4 selectivity on (Rh-Ni)/αβ-MoXC achieves 86.6%, and the CO2 conversion rate reaches 61.0%. All the prepared catalysts show excellent catalytic properties. Different roles are proved for each component of (Rh-Ni)/αβ-MoXC catalyst, Rh could improve the hydrogen reducing capacity of the material effectively. Ni and Rh bimetals on the surface of the αβ-MoXC support significantly increase the adsorption capacity of CO2 which is a benefit to the catalytic activity of (Rh-Ni)/αβ-MoXC. The joint effects and different roles of each component of (Rh-Ni)/αβ-MoXC account for the superiority of (Rh-Ni)/αβ-MoXC.

Graphic abstract

The (1.0% Rh-3.0% Ni)/αβ-MoXC shows an excellent catalytic performance for CO2 methanation reaction. Ni and Rh bimetals on the surface of the αβ-MoXC support increases the adsorption capacity of CO2 which is benefit to the activity of (Rh-Ni)/αβ-MoXC. The joint effect of bimetals and αβ-MoXC accounts for the superiority of (Rh-Ni)/αβ-MoXC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Lange F, Armbruster U and Martin A 2015 Heterogeneously-catalyzed hydrogenation of carbon dioxide to methane using RuNi bimetallic catalysts Energy Technol. 3 55

    Article  CAS  Google Scholar 

  2. Wei W and Jinlong G 2010 Methanation of carbon dioxide: an overview Front. Chem. Sci. Eng. 5 2

    Article  Google Scholar 

  3. Miguel C V, Soria M A, Mendes A and Madeira L M 2015 Direct CO2 hydrogenation to methane or methanol from post-combustion exhaust streams—A thermodynamic study J. Nat. Gas Sci. Eng. 22 1

    Article  CAS  Google Scholar 

  4. Aziz M A A, Jalil A A, Triwahyono S and Ahmad A 2015 CO2 methanation over heterogeneous catalysts: recent progress and future prospects Green Chem. 17 2647

    Article  CAS  Google Scholar 

  5. Dai Y, Xu M, Wang Q, Huang R, Jin Y, Bian B, et al. 2020 Enhanced activity and stability of Ni/La2O2CO3 catalyst for CO2 methanation by metal-carbonate interaction Appl. Catal. B-Environ. 277 119271

    Article  CAS  Google Scholar 

  6. Zhou G, Liu H, Xing Y, Xu S, Xie H and Xiong K 2018 CO2 hydrogenation to methane over mesoporous Co/SiO2 catalysts: Effect of structure J. CO2 Util. 26 221

    Article  CAS  Google Scholar 

  7. Chang F W, Kuo M S, Tsay M T and Hsieh M C 2003 Hydrogenation of CO2 over nickel catalysts on rice husk ash-alumina prepared by incipient wetness impregnation Appl. Catal. A-Gen. 247 309

    Article  CAS  Google Scholar 

  8. Sharma S, Hu Z, Zhang P, McFarland E W and Metiu H 2011 CO2 methanation on Ru-doped ceria J. Catal. 278 297

    Article  CAS  Google Scholar 

  9. Zhao K, Wang W and Li Z 2016 Highly efficient Ni/ZrO2 catalysts prepared via combustion method for CO2 methanation J. CO2 Util. 16 236

    Article  CAS  Google Scholar 

  10. Ratchahat S, Sudoh M, Suzuki Y, Kawasaki W, Watanabe R and Fukuhara C 2018 Development of a powerful CO2 methanation process using a structured Ni/CeO2 catalyst J. CO2 Util. 24 210

    Article  CAS  Google Scholar 

  11. Xu W, Ramirez P J, Stacchiola D and Rodriguez J A 2014 Synthesis of α-MoC1-x and β-MoCy catalysts for CO2 hydrogenation by thermal carburization of Mo-oxide in hydrocarbon and hydrogen mixtures Catal. Lett. 144 1418

    Article  CAS  Google Scholar 

  12. Ma B, Xu H, Lin K, Li J, Zhan H, Liu W and Li C 2016 Mo2C as non-noble metal Co-catalyst in Mo2C/CdS composite for enhanced photocatalytic H2 evolution under visible light irradiation ChemSusChem 9 820

    Article  CAS  Google Scholar 

  13. Yao S, Zhang X, Zhou W, Gao R, Xu W, Ye Y, et al. 2017 Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction Science 357 389

    Article  CAS  Google Scholar 

  14. Rodriguez J A, Evans J, Feria L, Vidal A B, Liu P, Nakamura K and Illas F 2013 CO2 hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC catalysts: Production of CO, methanol, and methane J. Catal. 307 162

    Article  CAS  Google Scholar 

  15. Ma B, Li D, Wang X and Lin K 2018 Molybdenum-based Co-catalysts in photocatalytic hydrogen production: Categories, structures, and roles ChemSusChem 11 3871

    Article  CAS  Google Scholar 

  16. Ma B, Wang X, Lin K, Li J, Liu Y, Zhan H and Liu W 2017 A novel ultraefficient non-noble metal composite cocatalyst Mo2N/Mo2C/graphene for enhanced photocatalytic H2 evolution Int. J. Hydrogen Energ. 42 18977

    Article  CAS  Google Scholar 

  17. Tang Y, Lan K, Li F, Jiang P, Wang X, Yang Y, et al. 2019 Reduced graphene oxide-supported Ni-MoxC electrocatalyst for hydrogen evolution reaction prepared by ultrasonication and lyophilization Int. J. Hydrogen Energ. 44 9328

    Article  CAS  Google Scholar 

  18. Zhao Y, Kamiya K, Hashimoto K and Nakanishi S 2014 In situ CO2-emission assisted synthesis of molybdenum carbonitride nanomaterial as hydrogen evolution electrocatalyst J. Am. Chem. Soc. 137 110

    Article  Google Scholar 

  19. Lin H, Shi Z, He S, Yu X, Wang S, Gao Q and Tang Y 2016 Heteronanowires of MoC–Mo2C as efficient electrocatalysts for hydrogen evolution reaction Chem. Sci. 7 3399

    Article  CAS  Google Scholar 

  20. Wan C, Regmi Y N and Leonard B M 2014 Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction Angew. Chem. Int. Edit. 53 6407

    Article  CAS  Google Scholar 

  21. Han G, Jin Y-H, Burgess R A, Dickenson N E, Cao X-M and Sun Y 2017 Visible-light-driven valorization of biomass intermediates integrated with H2 production catalyzed by ultrathin Ni/CdS nanosheets J. Am. Chem. Soc. 139 15584

    Article  CAS  Google Scholar 

  22. Wan Abu Bakar W A, Othman M Y, Ali R and Yong C K 2008 Nickel oxide based supported catalysts for the in-situ reactions of methanation and desulfurization in the removal of sour gases from simulated natural gas Catal. Lett. 128 127

    Article  Google Scholar 

  23. Ma Y, Liu J, Chu M, Yue J, Cui Y and Xu G 2019 Cooperation between active metal and basic support in Ni-based catalyst for low-temperature CO2 methanation Catal. Lett. 150 1418

    Article  Google Scholar 

  24. Zhang L, Ball M R, Liu Y, Kuech T F, Huber G W, Mavrikakis M, et al. 2019 Synthesis gas conversion over rh/mo catalysts prepared by atomic layer deposition ACS Catal. 9 1810

    Article  CAS  Google Scholar 

  25. Wang S, Guo W, Wang H, Zhu L and Qiu K 2014 Influence of Mn promotion on CO hydrogenation over Rh/CNTs catalyst Catal. Lett. 144 1305

    Article  CAS  Google Scholar 

  26. Takahashi R, Sato S, Sodesawa T, Yoshida M and Tomiyama S 2004 Addition of zirconia in Ni/SiO2 catalyst for improvement of steam resistance Appl. Catal. A-Gen. 273 211

    Article  CAS  Google Scholar 

  27. Shi C, Zhang S, Li X, Zhang A, Shi M, Zhu Y, et al. 2014 Synergism in NiMoOx precursors essential for CH4/CO2 dry reforming Catal. Today 233 46

    Article  CAS  Google Scholar 

  28. Sarusi I, Fodor K, Baán K, Oszkó A, Pótári G and Erdőhelyi A 2011 CO2 reforming of CH4 on doped Rh/Al2O3 catalysts Catal. Today 171 132

    Article  CAS  Google Scholar 

  29. Liu X, Kunkel C, Ramírez de la Piscina P, Homs N, Viñes F and Illas F 2017 Effective and highly selective CO generation from CO2 using a polycrystalline α-Mo2C catalyst ACS Catal. 7 4323

    Article  CAS  Google Scholar 

  30. Crisafulli C, Scirè S, Minicò S and Solarino L 2002 Ni–Ru bimetallic catalysts for the CO2 reforming of methane Appl. Catal. A-Gen. 225 1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is funded by the Project of Key Research Plan of Ningxia (2019BDE03003), National Natural Science Foundation of China (NSFC, 21862014, 21862013), and the National First-rate Discipline Construction Project of Ningxia (Chemical Engineering and Technology).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to HAIJUAN ZHAN or BAOJUN MA.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 461 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LIN, K., YANG, X., MA, X. et al. Efficient bimetal loaded (Rh-Ni)/αβ-MoxC catalyst for CO2 methanation. J Chem Sci 133, 108 (2021). https://doi.org/10.1007/s12039-021-01972-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-021-01972-9

Keywords

Navigation