Skip to main content
Log in

\(\mathrm{NiFe}_{2}\mathrm{O}_{4 }\) nanoparticles-decorated activated carbon nanocomposite based electrochemical sensor for selective detection of dopamine in presence of uric acid and ascorbic acid

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

We propose an electrochemical sensor using \(\hbox {NiFe}_{2}\hbox {O}_{4}\) nanoparticles-decorated activated carbon (AC) nanocomposite for selective detection of dopamine (DA) in the presence of uric acid (UA) and ascorbic acid (AA). The nanocomposite was prepared by a simple hydrothermal method and the characterization was done using transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD) patterns and Fourier transform infrared (FTIR) spectroscopy. The \(\hbox {NiFe}_{2}\hbox {O}_{4}\)-AC-modified glassy carbon electrode (GCE) showed excellent electrocatalytic activity towards DA compared to \(\hbox {NiFe}_{2}\hbox {O}_{4}\)/GCE and AC/GCE. This is attributed to the synergistic action and the large surface area of the nanocomposite. Differential pulse voltammetry (DPV) was employed for the detection of DA wherein the detection limit of \(0.4\,\upmu \hbox {M}\) along with a linear range of \(5\,\upmu \hbox {M}\) to \(100\,\upmu \hbox {M}\) was deduced. The selective detection of DA in presence of AA and UA was demonstrated. The advantages of the present sensor include the ease of preparation of the nanocomposite, low detection limit, remarkable selectivity, good reproducibility and stability.

Graphical Abstract

\(\hbox {NiFe}_{2}\hbox {O}{4}\)-AC nanocomposite was prepared by a simple hydrothermal method. The nanocomposite exhibited enhanced activity towards electro-oxidation of dopamine and excellent selectivity in the presence of uric acid (UA) and ascorbic acid (AA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dalley J W and Roiser J P 2012 Dopamine, serotonin and impulsivity Neuroscience 215 42

    Article  CAS  Google Scholar 

  2. Cao X, Luo L, Ding Y, Zou X and Bian R 2008 Electrochemical methods for simultaneous determination of dopamine and ascorbic acid using cetylpyridine bromide/chitosan composite film-modified glassy carbon electrode Sens. Actuat. B-Chem. 129 941

    Article  CAS  Google Scholar 

  3. Guan C L, Ouyang J, Li Q L, Liu B H and Baeyens W R G 2000 Simultaneous determination of catecholamines by ion chromatography with direct conductivity detection Talanta 50 1197

    Article  CAS  Google Scholar 

  4. Saylor R A, Reid E A and Lunte S M 2015 Microchip electrophoresis with electrochemical detection for the determination of analytes in the dopamine metabolic pathway Electrophoresis 36 1912

    Article  CAS  Google Scholar 

  5. Yildirim A and Bayindir M 2014 Turn-on fluorescent dopamine sensing based on in situ formation of visible light emitting polydopamine nanoparticles Anal. Chem. 86 5508

    Article  CAS  Google Scholar 

  6. Jackowska K and Krysinski P 2013 New trends in electrochemical sensing of dopamine Anal. Bioanal. Chem. 405 3753

    Article  CAS  Google Scholar 

  7. Yu Z, Li X, Wang X, Ma X, Li X and Cao K 2012 Voltammetric determination of dopamine and norepinphrine on a glassy carbon electrode modified with poly (L-aspartic acid) J. Chem. Sci. 124 537

    Article  CAS  Google Scholar 

  8. Kalimuthu P and John A S 2011 Selective determination of 3,4-dihydroxyphenylacetic acid in the presence of ascorbic and uric acids using polymer modified electrode J. Chem. Sci. 123 349

    Article  CAS  Google Scholar 

  9. Gualandi I, Tonelli D, Mariani F, Scavetta E, Marzocchi M and Fraboni B 2016 Selective detection of dopamine with an all PEDOT:PSS organic electrochemical transistor Sci. Reports 6 35419

    Article  CAS  Google Scholar 

  10. Kumar K M, Pratap R K V, Mohan S and Jha S K 2016 Preparation of electro-reduced graphene oxide supported walnut shape nickel nanostructures and their application to selective detection of dopamine Microchim. Acta 183 1759

    Article  CAS  Google Scholar 

  11. Kaur B, Pandiyan T, Satpati B and Srivastava R 2013 Simultaneous and sensitive determination of ascorbic acid, dopamine, uric acid and tryptophan with silver nanoparticles-decorated reduced graphene oxide modified electrode Colloids Surf. B 111 97

    Article  CAS  Google Scholar 

  12. Ramaraj R 2006 Nanostructured metal particle-modified electrode for electrocatalytic and sensor applications J. Chem. Sci. 118 593

    Article  CAS  Google Scholar 

  13. Raj C R, Tokuda K and Ohsaka T 2001 Electroanalytical applications of cationic self-assembled monolayers: square-wave voltammetric determination of dopamine and ascorbate Bioelectrochem. 53 183

    Article  CAS  Google Scholar 

  14. Raj C R, Okajima T and Ohsaka T 2003 Gold nanoparticle arrays for the voltemmetric sensing of dopamine J. Electroanal. Chem. 543 127

    Article  CAS  Google Scholar 

  15. Raj C R and Ohsaka T 2001 Electroanalysis of ascorbate and dopamine at a gold electrode modified with a positively charged self-assembled monolayer J. Electroanal. Chem. 496 44

    Article  CAS  Google Scholar 

  16. Choudhary M, Brink R, Nandi D, Siwal S and Mallick K 2017 Gold nanoparticle within polymer chain, a multifunctional complex material, for the electrochemical detection of dopamine, and the hydrogen atom-mediated reduction of Rhodamine B, a mechanistic approach J. Mater. Sci. 52 770

    Article  CAS  Google Scholar 

  17. Zhang W, Zheng J, Tan C, Lin X, Hu S, Chen J, You X and Li S 2015 Designed self-assembled hybrid Au@CdS core-shell nanoparticles with negative charge and their application as highly selective biosensors J. Mater. Chem. B 3 217

    Article  CAS  Google Scholar 

  18. Liu M, Chen Q, Lai C, Zhang Y, Deng J, Li H and Yao S 2013 A double signal amplification platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen based on a nanocomposite of ferrocene thiolate stabilized \({\text{Fe}}_{3}{\text{ O }}_{4}\)@Au nanoparticles with graphene sheet Biosens. Bioelectron. 48 75

  19. Zhao D, Fan D, Wang J and Xu C 2015 Hierarchical nanoporous platinum-copper alloy for simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid Microchim. Acta 182 1345

    Article  CAS  Google Scholar 

  20. Hou J, Xu C, Zhao D and Zhou J 2016 Facile fabrication of hierarchical AuAg alloy and its highly sensitive detection towards dopamine and uric acid Sens. Actuat. B-Chem. 225 241

    Article  CAS  Google Scholar 

  21. Mani V, Govindasamy M, Chen S, Karthik R and Huang S 2016 Determination of dopamine using a glassy carbon electrode modified with graphene and carbon nanotube hybrid decorated with molybdenum disulfide flowers Microchim. Acta 183 2267

    Article  CAS  Google Scholar 

  22. Xing L and Ma Z 2016 A glassy carbon electrode modified with a nanocomposite consisting of \(\text{ MoS }_{2}\) and reduced graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine and uric acid Microchim. Acta 183 257

    Article  CAS  Google Scholar 

  23. Nayak P, Kurra N, Xia C and Alshareef H N 2016 Highly efficient laser scribed graphene electrodes for on-chip electrochemical sensing applications Adv. Mater. 2 1600185

    Google Scholar 

  24. Dong J, Hu Y, Zhu S, Xu J and Xu Y 2010 A highly selective and sensitive dopamine and uric acid biosensor fabricated with functionalized ordered mesoporous carbon and hydrophobic ionic liquid Anal. Bioanal. Chem. 396 1755

    Article  CAS  Google Scholar 

  25. Pruneanu S, Biris A R, Pogacean F, Socaci C, Coros M, Rosu M C, Watanabe F and Biris A R 2015 The influence of uric acid and ascorbic acid on the electrochemical detection of dopamine using graphene-modified electrodes Electrochim. Acta 154 197

    Article  CAS  Google Scholar 

  26. Aneesh K and Berchmans S 2017 Highly selective sensing of dopamine using carbon nanotube ink doped with anionic surfactant modified disposable paper electrode J. Solid State Electrochem. 21 1263

    Article  CAS  Google Scholar 

  27. Ma H, Chen T, Luo Y, Kong F, Fan D, Fang H and Wang W 2016 Electrochemical determination of dopamine using octahedral \(\text{ SnO }_{2}\) nanocrystals bound to reduced graphene oxide nanosheets Microchim. Acta 182 2001

    Article  Google Scholar 

  28. Roychoudhury A, Basu S and Jha S K 2016 Dopamine biosensor based on surface functionalized nanostrucutred nickel oxide platform Biosens. Bioelectron. 84 72

    Article  CAS  Google Scholar 

  29. Yasmin S, Ahmed M S, Park D and Jeon S 2016 Nitrogen-doped graphene supported cobalt oxide for sensitive determination of dopamine in presence of high level of ascorbic acid J. Electrochem. Soc. 163 B491

    Article  CAS  Google Scholar 

  30. Baraneedharan P, Alexander S and Ramprabhu S 2016 One-step in situ hydrothermal preparation of grpahene-\(\text{ SnO }_{2}\) nanohybrid for superior dopamine detection J. Appl. Electrochem. 46 1187

    Article  CAS  Google Scholar 

  31. Zhang X, Zhang Y and Ma L 2016 One-pot facile fabrication of zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid Sens. Actuat. B-Chem. 227 448

    Article  Google Scholar 

  32. Wu L, Tan Y, Wang L, Sun S, Qu Z, Zhang J and Fan Y 2015 Dopamine sensor based on hybrid material composed of cuprous oxide hollow microspheres and carbon black Microchim. Acta 182 1361

    Article  CAS  Google Scholar 

  33. Selvaraju T and Ramaraj R 2014 Signal amplification of dopamine using lanthanum hexacyanoferrate-modified electrode J. Chem. Sci. 126 11

    Article  CAS  Google Scholar 

  34. Xie Y, Yuan J, Ye H, Song P and Hu S 2015 Facile ultrasonic synthesis of graphene/\(\text{ SnO }_{2}\) nanocomposite and its application to the simultaneous electrochemical determination of dopamine, ascorbic acid and uric acid J. Electroanal. Chem. 749 26

    Article  CAS  Google Scholar 

  35. Sun W, Wang X, Wang Y, Ju X, Xu L, Li G and Sun Z 2013 Application of graphene- \(\text{ SnO }_{2}\) nanocomposite modified electrode for the sensitive electrochemical detection of dopamine Electrochim. Acta 87 317

    Article  CAS  Google Scholar 

  36. Anithaa A C, Lavanya N, Asokan K and Sekar C 2015 \(\text{ WO }_{3}\) nanoparticles based direct electrochemical dopamine sensor in the presence of ascorbic acid Electrochim. Acta 167 294

    Article  CAS  Google Scholar 

  37. Yin A, Wei X, Cao Y and Li H 2016 High-quality molybdenum disulphide nanosheets with 3D structure for electrochemical sensing Appl. Surf. Sci. 385 63

    Article  CAS  Google Scholar 

  38. Khan A F, Brownson D A C, Randviir E P, Simth G C and Bankd C E 2016 2D hexagonal boron nitride (2D-hBN) explored for the electrochemical sensing of dopamine Anal. Chem. 88 9729

    Article  CAS  Google Scholar 

  39. Sivasubramanian R and Biji P 2016 Preparation of copper (I) oxide nanohexagon decorated reduced graphene oxide nanocomposite and its application in electrochemical sensing of dopamine Mater. Sci. Engg. B 210 10

    Article  CAS  Google Scholar 

  40. Marsh H and Rodriguez-Reinso 2006 Activated Carbon (UK: Elseiver)

  41. Kim B, Lee Y and Park S 2007 A study on pore-opening behavior of graphite nanofibers by a chemical activation process J. Colloid Interface Sci. 306 454

    Article  CAS  Google Scholar 

  42. Chitravathi S and Munichandraiah N 2015 Simultaneous determination of catecholamines in presence of uric acid and ascorbic acid at a highly sensitive electrochemically activated carbon paste electrode J. Electrochem. Soc. 162 B163

    Article  CAS  Google Scholar 

  43. Veeramani V, Madhu R, Chen S, Lou B, Palanisamy J and Vasantha V S 2015 Biomass-derived functional porous carbons as novel electrode material for the practical detection of biomolecules in human serum and snail hemolymph Sci. Sci. Reports 5 10141

    Article  Google Scholar 

  44. Wang X, Yu L, Wu X, Yuvan F, Guo Y, Ma Y and Yao J 2009 Synthesis of single-crystalline \(\text{ Co }_{3}\text{ O }_{4}\) octahedral cages with tunable size aperture and their lithium storage properties J. Phys. Chem. C 113 1553

    Google Scholar 

  45. Rivas-Murias B, Vila-Fungueirino J M and Rivadulla F 2015 High quality thin films of thermoelectric misfit cobalt oxides prepared by a chemical reduction method Sci. Reports 5 11889

    Article  Google Scholar 

  46. Afkhami A, Khoshsafar H, Bagheri H and Madrakian T 2014 Preparation of \(\text{ NiFe }_{2}\text{ O }_{4}\)/graphene nanocomposite and its application as a modifier for the fabrication of an electrochemical sensor for simultaneous determination of tramadol and acetaminophen Anal. Chim. Acta 831 50

    Article  CAS  Google Scholar 

  47. Ensafi A A, Arashpour B, Rezaei B and Allafchian A R 2014 Voltammetric behavior of dopamine at a glassy carbon electrode modified with \(\text{ NiFe }_{2}\text{ O }_{4}\) magnetic nanoparticles decorated with multiwalled carbon nanotubes Mater. Sci. Engg. C 39 78

    Article  CAS  Google Scholar 

  48. Skoog D A, Holler F J and Crouch S R 1998 In Principles of Instrumental Analysis \(6^{\rm th}\) edn. (USA: Thomas Brooks/Cole) p. 20

  49. How G T S, Pandikumar A, Ming H N and Ngee L H 2014 Highly exposed \(\{001\}\) facets of titanium dioxide modified with reduced graphene oxide for dopamine sensing Sci. Reports 4 5044

    Article  CAS  Google Scholar 

  50. Zhang X, Zhang Y and Ma L 2016 One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid Sens. Actuat. B-Chem. 227 488

    Article  CAS  Google Scholar 

  51. Yasmin S, Ahmed MS and Jeon S 2015 Determination of dopamine by dual doped graphene-Fe2O3 in presence of ascorbic acid J. Electrochem. Soc. 162 B363

    Article  CAS  Google Scholar 

  52. Selvarajan S, Suganthi A and Rajarajan M 2017 A facile approach to the synthesis of mesoporous \(\text{ SnO }_{2}\)/Chitosan nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine and uric acid Surf. Interfaces 7 146

    Article  CAS  Google Scholar 

  53. Dinesh B, Saraswathi R and Senthilkumar A 2017 Water based homogenous carbon ink modified electrode as an efficient sensor system for simultaneous detection of ascorbic acid, dopamine and uric acid Electrochim. Acta 233 92

    Article  CAS  Google Scholar 

  54. Cai W, Lai T, Du H and Ye J 2014 Electrochemical determination of ascorbic acid, dopamine and uric acid based on exfoliated graphite paper electrode: A high performance flexible sensor Sens. Actuat. B-Chem. 193 492

    Article  CAS  Google Scholar 

  55. Yang L, Liu D, Huang J and You T 2014 Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode Sens. Actuat. B-Chem. 193 166

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Department of Science and Technology (Grant No. ECR/2015/000099), Government of India. The authors wish to acknowledge the facilities and support provided by the Management PSG Sons and Charities, Coimbatore, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Sivasubramanian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 315 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aparna, T.K., Sivasubramanian, R. \(\mathrm{NiFe}_{2}\mathrm{O}_{4 }\) nanoparticles-decorated activated carbon nanocomposite based electrochemical sensor for selective detection of dopamine in presence of uric acid and ascorbic acid. J Chem Sci 130, 14 (2018). https://doi.org/10.1007/s12039-017-1413-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-017-1413-0

Keywords

Navigation