Skip to main content
Log in

Preparation of electro-reduced graphene oxide supported walnut shape nickel nanostructures, and their application to selective detection of dopamine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A selective and sensitive method is reported for the detection of dopamine (DA) by using electro-reduced graphene oxide (er-GO) supported walnut shape nickel nanocomposite (er-GO-Ni) modified glassy carbon electrode. The surface morphological characterizations reveal that the Ni nanoparticles were homogeneously distributed on the er-GO nanosheets. Subsequently the electrochemical study shows an excellent selectivity, reproducibility, low detection limit (10 ± 0.03 nM), high sensitivity (23.3 nA·μM−1), and reasonably wide linear range (0.05–50 μM) for the detection of DA at +0.1 V vs SCE. The selectivity for DA over ascorbic acid and uric acid is attributed to the charge-based discrimination of the modified electrode. An excellent correspondence of calculated and reported rate constant for the DA oxidation is also obtained by hydrodynamic experiments using a rotating disk electrode.

Selective detection of dopamine is demonstrated and assumed to be due to (i) a Nafion film coating, (ii) repulsive electrostatic interaction with the negative charge on residual oxygen functionality of electro-reduced graphene oxide (er-GO), and (iii) the presence of oxide or hydroxide Ni species during deposition of sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    Article  CAS  Google Scholar 

  2. Kim Y, Bong S, Kang Y, Yang Y, Mahajan R, Kim J, Kim H (2010) Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes biosens. Bioelectron. 25:2366–2369

    Article  CAS  Google Scholar 

  3. Wang Y, Li Y, Tang L, Lu J, Li J (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11:889–892

    Article  CAS  Google Scholar 

  4. Liu S, Yan J, He G, Zhong D, Chen J, Shi L, Zhou X, Jiang H (2012) Layer-by-layer assembled multilayer films of reduced graphene oxide/gold nanoparticles for the electrochemical detection of dopamine. J Electroanal Chem 672:40–44

    Article  CAS  Google Scholar 

  5. Sun C, Lee H, Yang J, Wu C (2011) The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens. Bioelectron. 26:3450–3455

    Article  CAS  Google Scholar 

  6. Sanghavi BS, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–41

    Article  CAS  Google Scholar 

  7. Tsierkezos NG, Ritter U, Thaha YN, Downing C, Szroeder P, Scharff P (2016) Multi-walled carbon nanotubes doped with boron as an electrode material for electrochemical studies on dopamine, uric acid, and ascorbic acid. Microchim Acta 183:35–47

    Article  CAS  Google Scholar 

  8. Zhao D, Fan D, Wang J, Xu C (2015) Hierarchical nanoporous platinum-copper alloy for simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid. Microchim Acta 182:1345–1352

    Article  CAS  Google Scholar 

  9. Xing L, Ma Z (2016) A glassy carbon electrode modified with a nanocomposite consisting of MoS2and reduced graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine, and uric acid. Microchim Acta 183:257–263

    Article  CAS  Google Scholar 

  10. Rafati AA, Afraz A, Hajian A, Assari P (2014) Simultaneous determination of ascorbic acid, dopamine, and uric acid using a carbon paste electrode modified with multiwalled carbon nanotubes, ionic liquid, and palladium nanoparticles. Microchim Acta 181:1999–2008

    Article  CAS  Google Scholar 

  11. Palanisamy S, Ku S, Chen SM (2013) Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite. Microchim Acta 180:1037–1042

    Article  CAS  Google Scholar 

  12. Wang Q, Tang QL (2015) Improved sensing of dopamine and ascorbic acid using a glassy carbon electrode modified with electrochemically synthesized nickel-cobalt hexacyanoferratemicroparticles deposited on graphene. Microchim Acta 182:671–677

    Article  CAS  Google Scholar 

  13. Hsieh YS, Hong BD, Lee CL (2015) Non-enzymatic sensing of dopamine using a glassy carbon electrode modified with a nanocomposite consisting of palladium nanocubes supported on reduced graphene oxide in a nafion matrix. Microchim Acta. doi:10.1007/s00604-015-1668-4

    Google Scholar 

  14. Ma HF, Chen TT, Luo Y, Kong FY, Fan DH, Fang HL, Wang W (2015) Electrochemical determination of dopamine using octahedral SnO2 nanocrystals bound to reduced graphene oxide nanosheets. Microchim Acta 182:2001–2007

    Article  CAS  Google Scholar 

  15. Huang KJ, Wang L, Li J, Yu M, Liu YM (2013) Electrochemical sensing of catechol using a glassy carbon electrode modified with a composite made from silver nanoparticles, polydopamine, and graphene. Microchim Acta 180:751–757

    Article  CAS  Google Scholar 

  16. Zhang L, Li Y, Zhang L, Li DW, Karpuzov D, Long YT (2011) Electrocatalytic oxidation of NADH on graphene oxide and reduced graphene oxide modified screen-printed electrode. Int J Electrochem Sci 6:819–829

    Google Scholar 

  17. Song W, Li DW, Li YT, Li Y, Long YT (2011) Disposable biosensor based on graphene oxide conjugated with tyrosinase assembled gold nanoparticles. Biosens Bioelectron 26:3181–3186

    Article  CAS  Google Scholar 

  18. Liu Q, Li Y, Zhang L, Li D, Fan C, Long YT (2010) Comparative studies on electrocatalytic activities of chemically reduced graphene oxide and electrochemically reduced graphene oxide noncovalently functionalized with poly (methylene blue). Electroanalysis 22:2862–2870

    Article  CAS  Google Scholar 

  19. Venton BJ, Wightman RM (2003) Psychoanalytical electrochemistry: dopamine and behavior. Anal Chem 75:414A–421A

    Article  CAS  Google Scholar 

  20. Wightman RM, May LJ, Michael AC (1988) Detection of dopamine dynamics in the brain. Anal Chem 60:769A–779A

    Article  CAS  Google Scholar 

  21. Phillips PEM, Stuber GD, Heien MLAV, Wightman RM, Carelli RM (2003) Subsecond dopamine release promotes cocaine seeking. Nature 422:614–617

    Article  CAS  Google Scholar 

  22. Moghadam MR, Dadfarnia S, Shabani AMH, Shahbazikhah P (2011) Chemometric-assisted kinetic–spectrophotometric method for simultaneous determination of ascorbic acid, uric acid, and dopamine. Anal Biochem 410:289

    Article  CAS  Google Scholar 

  23. Zhao H, Mu H, Bai Y, Yu Y, Hu Y (2011) A rapid method for the determination of dopamine in porcine muscle by pre-column derivatization and HPLC with fluorescence detection. J Pharm Anal 1:208

    Article  CAS  Google Scholar 

  24. González RR, Fernández RF, Vidal JLM, Frenich AG, Pérez MLG (2011) Development and validation of an Ultra-high performance liquid chromatography–tandem mass-spectrometry (UHPLC–MS/MS) method for the simultaneous determination of neurotransmitters in rat brain samples. J. Neurosci. Meth. 198:187

    Article  Google Scholar 

  25. Kawagoe TK, Wightman RM (1994) Characterization of amperometry for in vivo measurement of dopamine dynamics in the rat brain. Talanta 41:865–874

    Article  CAS  Google Scholar 

  26. Zhou X, Zheng N, Hou S, Li X, Yuan Z (2010) Selective determination of dopamine in the presence of ascorbic acid at a multi-wall carbon nanotube-poly(3, 5-dihydroxy benzoic acid) film modified electrode. J Electroanal Chem 642:30

    Article  CAS  Google Scholar 

  27. Jiang L, Liu C, Jiang L, Peng Z, Lu G (2004) A chitosan-multiwall carbon nanotube modified electrode for simultaneous detection of dopamine and ascorbic acid. Anal Sci 20:1055–1059

    Article  CAS  Google Scholar 

  28. Huang Y, Miao Y-E, Ji S, Tjiu WW, Liu T (2014) Electrospun carbon nanofibers decorated with Ag − Pt bimetallic nanoparticles for selective detection of dopamine. ACS Appl Mater Interfaces 6:12449–12456

    Article  CAS  Google Scholar 

  29. Jacobs B, Ivanov IN, Nguyen MD, Zestos AG, Venton BJ (2014) High temporal resolution measurements of dopamine with carbon nanotube yarn microelectrodes christopher. Anal Chem 86:5721–5727

    Article  CAS  Google Scholar 

  30. Kruss S, Landry MP, Ende EV, Lima BMA, Reuel NF, Zhang J, Nelson J, Mu B, Hilmer A, Strano M (2014) Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors. J Am Chem Soc 136:713–724

    Article  CAS  Google Scholar 

  31. Zhao J, Zhang W, Sherrell P, Razal JM, Huang X-F, Minett AI, Chen J (2012) Carbon nanotube nanoweb − bioelectrode for highly selective dopamine sensing. ACS Appl Mater Interfaces 4:44–48

    Article  CAS  Google Scholar 

  32. Fujishima A, Rao TN, Popa E, Sarada BV, Yagi I, Tryk DA (1999) Electroanalysis of dopamine and NADH at conductive diamond electrodes. J Electroanal Chem 473:179–185

    Article  CAS  Google Scholar 

  33. Heien MLAV, Phillips PEM, Stuber GD, Seipel AT, Wightman RM (2003) Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and increases sensitivity. Analyst 128:1413–1419

    Article  CAS  Google Scholar 

  34. Nagy G, Gerhardt GA, Oke AF, Rice ME, Adams RN, Szentirmay MN, Martin CR (1985) Ion exchange and transport of neurotransmitters in nafion films on conventionaland microelectrode surfaces. J Electroanal Chem 188:85–94

    Article  CAS  Google Scholar 

  35. Dávila MM, Elizalde MP, Mattusch J, Wennrich R (2001) Study of the composite electrodes carbon-polyvinyl chloride and carbon-polyvinyl chloride/nafion by ex-situ and in situ methods. Electrochim Acta 46:3189–3197

    Article  Google Scholar 

  36. Yuan S, Hu S (2004) Characterization and electrochemical studies of nafion/nano-TiO2 film modified electrodes. Electrochim Acta 49:4287–4293

    Article  CAS  Google Scholar 

  37. Matysik FM, Matysik S, Brett AMO, Brett CMA (1997) Ultrasound-enhanced anodic stripping voltammetry using perfluorosulfonated ionomer-coated mercury thin-film electrodes. Anal Chem 69:1651–1656

    Article  CAS  Google Scholar 

  38. Dey RS, Hajra S, Sahu RK, Raj CR, Panigrahi MK (2012) A rapid room temperature chemical route for the synthesis of graphene: metal-mediated reduction of graphene oxide. Chem Commun 48:1787–1790

    Article  CAS  Google Scholar 

  39. Jha SK, Kumar CN, Raj RP, Jha NS, Mohan S (2014) Synthesis of 3D porous CeO2/reduced graphene oxide xerogel composite and low level detection of H2O2. Electrochim Acta 120:308–313

    Article  CAS  Google Scholar 

  40. Kumar MK, Jha NS, Mohan S, Jha SK (2014) Reduced graphene oxide-supported nickel oxide catalyst with improved CO tolerance for formic acid electrooxidation. int. J. Hydrogen Energy 39:12572–12577

    Article  CAS  Google Scholar 

  41. Bard AJ, Faulkner LR (2001) Electrochemical Methods: Fundamentals and Applications, 2nd Ed., Wiley, New York, Ch. 5.

  42. Xu GR, Xu ML, Zhang JM, Kim S, Bae Z-U (2008) Electropolymerization of negatively charged Ni(II) complex for the selective determination of dopamine in the presence of ascorbic acid. Bioelectrochem. 72:87–93

    Article  CAS  Google Scholar 

  43. Yi S-Y, Chang H-Y, Cho H-H, Park YC, Lee SH, Bae Z-U (2007) Resolution of dopamine and ascorbic acid using Ni(II) complex polymer-modified electrode. J Electroanal Chem 602:217–225

    Article  CAS  Google Scholar 

  44. Suresh R, Giribabu K, Manigandan R, Kumar SP, Munusamy S, Muthamizha S, Stephen A, Narayanan V (2014) New electrochemical sensor based on Ni-doped V2O5 nanoplates modified glassy carbon electrode for selective determination of dopamine at nanomolar level. Sensors Actuators B Chem 202:440–447

    Article  CAS  Google Scholar 

  45. Kang T-F, Shen G-L, Yu R-Q (1997) Voltammetric behaviour of dopamine at nickel phthalocyanine polymer modified electrodes and analytical applications. Anal Chim Acta 354:343–349

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Dr. Vijayamohanan K. Pillai, Director, CSIR-CECRI for his continuous support and encouragement. S K Jha thanks to the DST, India for financial assistance through SERC Fast Track Scheme No. SR/FT/CS-103/2011 and IHP0071. The support from the Central Instrumental Facility (CIF) of CSIR-CECRI, Karaikudi, especially from Mr. A. Rathishkumar (TEM in-charge, CIF) and Mr. J. Kennedy (XPS in-charge, CIF) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra K. Jha.

Electronic supplementary materials

Supporting Information: Details of electro-reduction of graphene oxide, Raman spectrum of graphene oxide (GO), electro-reduced graphene oxide (er-GO), and XPS study of er-GO-Ni composites are included here.

ESM 1

(DOCX 505 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M.K., Prataap, R.K.V., Mohan, S. et al. Preparation of electro-reduced graphene oxide supported walnut shape nickel nanostructures, and their application to selective detection of dopamine. Microchim Acta 183, 1759–1768 (2016). https://doi.org/10.1007/s00604-016-1806-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1806-7

Keywords

Navigation