Skip to main content
Log in

Density functional theory study of structure, electronic and magnetic properties of non-metal (Group 13) doped stable \(\hbox {Rh}_{\mathrm{n}}({\mathrm{n}}=2{-}8)\) clusters and their catalytic activities towards methanol activation

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Rhodium clusters are very important finite size materials because of their unique electronic, magnetic and catalytic properties. Tuning the physical and chemical properties of rhodium clusters by incorporating different metal and non-metal atoms have found a great research interest in recent years. In this study, non-metal atoms of group 13, viz., B, Al or Ga were incorporated into the stable rhodium clusters to evaluate the structure, stability, electronic, magnetic as well as catalytic properties using density functional theory (DFT). Stability function, dissociation energy and LUMO-HOMO gap analysis reveal the higher stability of \(\hbox {Rh}_{5}\hbox {B}\), \(\hbox {Rh}_{4}\hbox {Al}\) and \(\hbox {Rh}_{4}\hbox {Ga}\) clusters. Boron-doped on even-atomic rhodium clusters are more stable than odd-atomic rhodium clusters whereas both odd and even-atomic clusters were found to be stable for Al and Ga-doped rhodium clusters. Deformed electron density was found to be higher in the case of \(\hbox {Rh}_{5}\hbox {B}\), \(\hbox {Rh}_{4}\hbox {Al}\), \(\hbox {Rh}_{7}\hbox {Al}\) and \(\hbox {Rh}_{4}\hbox {Ga}\) clusters along all the bonds as well as at the atoms, which indicates higher stability of these non-metal doped rhodium clusters. LUMO and HOMO orbital analysis suggests that electronic redistribution occurs from HOMO (Rh) to LUMO (non-metal). DOS and COOP studies reveal the higher contribution of d electrons in the bonding region rather than s and p electrons. Spin density and magnetic moment analysis indicate zero magnetic moment for even-atomic B, Al or Ga-doped rhodium clusters due to the cancellation of spin up and spin down densities, whereas for the odd ones the magnetic moment is non-zero. Greater catalytic activity for the activation of methanol is noticed with \(\hbox {Rh}_{4}\hbox {Al}\) and \(\hbox {Rh}_{4}\hbox {Ga}\) in comparison to \(\hbox {Rh}_{5}\), while the activity with \(\hbox {Rh}_{5}\hbox {B}\) is lower.

Graphical Abstract 

In this study B or Al or Ga are incorporated into pure rhodium clusters to evaluate the structural, electronic and magnetic properties using density functional theory. Structural and electronic parameters reveal the higher stability of \(\hbox {Rh}_{5}\hbox {B}\), \(\hbox {Rh}_{4}\hbox {Al}\) and \(\hbox {Rh}_{4}\hbox {Ga}\) clusters. Also, these doped clusters show methanol activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Johnston R L 2002 In Atomic and Molecular Clusters St. Edmundsbury press (London: Taylor and Francis) p. 256

  2. Connerade J P and Solovyov A V 2004 In Latest Advances in Atomic Cluster Collisions: Fission, Fusion, Electron, Ion and Photon Impact (London: Imperial College Press) p. 398

  3. Reinhard P G and Suraud E 2004 In Introduction to Cluster Dynamics (Weinheim: Wiley-VCH) p. 315

  4. Baletto F and Ferrando F 2005 Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects Rev. Mod. Phys. 77 371

    Article  CAS  Google Scholar 

  5. Knickelbein M B 2001 Experimental Observation of Superparamagnetism in Manganese Clusters Phys. Rev. Lett. 86 5255

    Article  CAS  Google Scholar 

  6. Reddy B V, Khanna S N and Dunlap B I 1993 Giant magnetic moments in 4d clusters Phys. Rev. Lett. 70 3323

    Article  CAS  Google Scholar 

  7. Moseler M, Hakkinen H, Barnett R N and Landman U 2001 Structure and magnetism of neutral and anionic palladium clusters Phys. Rev. Lett. 86 2545

    Article  CAS  Google Scholar 

  8. Jortner J 1992 Cluster size effects Z. Phys. D 24 247

    Article  CAS  Google Scholar 

  9. Johnston R L 1998 The development of metallic behaviour of clusters Philos. Trans. R. Soc. London, Ser. A 356 211

    Article  CAS  Google Scholar 

  10. Pearson W B 1972 The Crystal Chemistry and Physics of Metals and Alloys (New York: Wiley) p. 515

    Google Scholar 

  11. Ruban A V, Skriver H L and Norskov J K 1999 Surface segregation energies in transition-metal alloys Phys. Rev. B 59 15990

    Article  Google Scholar 

  12. Bozzolo G, Ferrante J, Noebe R D, Good B, Honecy F S and Abel P 1999 Surface segregation in multicomponent systems: Modeling of surface alloys and alloy surfaces Comput. Mater. Sci. 15 169

    Article  CAS  Google Scholar 

  13. Molenbroek A M, Haukka S and Clausen B S 1998 Alloying in Cu/Pd Nanoparticle Catalysts J. Phys. Chem. B 102 10680

    Article  CAS  Google Scholar 

  14. Braunstein P, Oroand L A, Raithby P R and Schmid G 1999 In Metal Clusters in Chemistry (Weinheim: Wiley-VCH) 3 1325

  15. Kalita B and Deka R C 2007 Stability of small \(\text{ Pd }_{{n}}(\text{ n }=1-7)\) clusters on the basis of structural and electronic properties: A density functional approach J. Chem. Phys. 127 244306

    Article  Google Scholar 

  16. Galicia R 1985 Rev. Mex. Fı’s. 32 51

    CAS  Google Scholar 

  17. Cox A J, Louderback J G and Bloomfield L A 1993 Experimental observation of magnetism in rhodium clusters Phys. Rev. Lett. 71 923

    Article  CAS  Google Scholar 

  18. Cox A J, Louderback J G, Apsel S E and Bloomfield L A 1994 Magnetism in 4\(d\)-transition metal clusters Phys. Rev. B 49 12295

    Article  CAS  Google Scholar 

  19. Mendes F M and Schmal M 1997 The Cyclohexanol dehydrogenation on \(\text{ Rh-Cu/Al }_{2}\text{ O }_{3}\) Catalysts: 2 Chemisorption and reaction Appl. Appl. Catal. A 163 153

    Article  CAS  Google Scholar 

  20. Trunschke A, Ewald H, Gutschick D, Miessner H, Skupin M, Walther B and Bottcher H C1989 New bimetallic Rh-Mo and Rh-W clusters as precursors for selective heterogeneous co hydrogenation J. Mol. Catal. 56 95

    Article  CAS  Google Scholar 

  21. Fromen M C, Serres A, Zitoun D, Respaud M, Amiens C, Chaudret B, Lecante P and Casanove M J 2002 Structural and magnetic study of bimetallic \(\text{ CO }_{1-X}\text{ Rh }_{X}\) J. Magn. Magn. Mater. 242 610

    Article  Google Scholar 

  22. Parsons R and Vandernoot T 1988 The oxidation of small organic molecules: A survey of recent fuel cell related research J. Electroanal. Chem. 257 9

    Article  CAS  Google Scholar 

  23. Agrell J, Germany G, Jaras S G and Boutonnet M 2003 Production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts prepared by microemulsion technique Appl. Cata. A: Gen. 242 233

    Article  CAS  Google Scholar 

  24. Liu S, Takahashi K, Eguchi H and Uematsu K 2007 Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst preparation and supporting materials Catal. Today 129 287

    CAS  Google Scholar 

  25. Ghatak K, Sengupta T and Pal S 2015 Computational investigation on the catalytic activity of \(\text{ Rh }_{6}\) and \(\text{ Rh }_{4}\text{ Ru }_{2}\) clusters towards methanol activation Theor. Theor. Chem. Accounts 134 1597

    Article  Google Scholar 

  26. Behr A, Brunsch Y and Lux A 2012 Rhodium nanoparticles as catalysts in the hydroformylation of 1-dodecene and their recycling in thermomorphic solvent systems Tetrahedron Lett. 53 2680

    Article  CAS  Google Scholar 

  27. Yoon T J, Kim J I and Lee J K 2003 Rh-based olefin hydroformylation catalysts and the change of their catalytic activity depending on the size of immobilizing supporters Inorg. Inorg. Chim. Acta 345 228

    Article  CAS  Google Scholar 

  28. Li K, Wang Y, Jiang J and Jin Z 2010 Hydroformylation of higher olefins by thermoregulated phase-transfer catalysis with rhodium nano particles Chin. J. Catal. 31 1191

    Article  CAS  Google Scholar 

  29. Vu T V, Kosslick H, Sculz A, Harloff J, Paetzold E, Ranik J, Kragl U, Fulda G, Janiak C and Tuyen N D 2013 Hydroformylation of olefins over rhodium supported metal-organic framework catalysts of different structure Microporous Mesoporous Mater . 177 135

    Article  CAS  Google Scholar 

  30. Sidhpuria K B, Patel H A, Parikh P A, Bahadur P, Bajaj H C and Jasra R V 2009 Rhodium nanoparticles intercalated into montmorillonite for hydrogenation of aromatic compounds in the presence of thiophene Appl. Clay Sci. 42 386

    Article  CAS  Google Scholar 

  31. Sanchez A, Fang M, Ahmed A and Sanchez-Dolgado R A 2014 Hydrogenation of arenes, N-heteroaromatic compounds, and alkenes catalyzed by rhodium nanoparticles supported on magnesium oxide Appl. Appl. Catal. A 477 117

    Article  CAS  Google Scholar 

  32. Chung Y M and Rhee H K 2003 Partial hydrogenation of 1,3-cyclooctadiene using dendrimer-encapsulated Pd–Rh bimetallic nanoparticles J. Mol. Catal. A 206 291

    Article  CAS  Google Scholar 

  33. Srivastava A K and Misra N 2014 Structures, stabilities, electronic and magnetic properties of small \(\text{ Rh }_{x}\text{ Mn }_{y}\,(x+y=-4\)) clusters Comput. Theory Chem. 1047 1

    Article  CAS  Google Scholar 

  34. Mokkath J H and Pastor G M 2012 First-principles study of structural, magnetic, and electronic properties of small Fe-Rh alloy clusters Phys. Rev. B 85 054407

    Article  Google Scholar 

  35. Dennler S, Morillo J and Pastor G M 2003 Calculation of magnetic and structural properties of small Co–Rh clusters Surf. Sci. 532 334

    Article  Google Scholar 

  36. Lu J, Bai X, Jia J F, Xu X H and Wu H S 2012 Structural, electronic and magnetic properties of \(\text{ Co }_{{n}}\text{ Rh } (\text{ n }=1-8\)) clusters from density functional calculations Phys. B 407 14

    Article  Google Scholar 

  37. Yang J X, Wei C F and Guo J J 2010 Density functional study of \(\text{ Au }_{{n}}\text{ Rh }\,(\text{ n }=1-8\)) clusters Phys. B 405 4892

  38. Soltani A, Boudjahem A G and Bettahar M 2016 Electronic and magnetic properties of small \(\text{ Rh }_{{n}}\text{ Ca }\,(\text{ n }=1-9\)) clusters: A DFT study Int. J. Quantum. Chem. 116 346

    Article  CAS  Google Scholar 

  39. Lecours M J, Chow W C T and Hopkins W S 2014 Density Functional Theory Study of \(\text{ Rh }_{{n}}\text{ S }^{0,\pm }\) and \(\text{ Rh }_{n+1}^{0,\pm }\) (\(n = 1-9\)) J. Phys. Chem. A 118 4278

    Article  CAS  Google Scholar 

  40. Zhang S, Zhang Y, Yang X, Lu C, Li G and Lu Z 2015 Systematic theoretical investigation of structures, stabilities, and electronic properties of rhodium-doped silicon clusters: \(\text{ Rh }_{2}\text{ Si }_{{n}}^{q}\) (\(n=1-10; q=0, \pm 1)\) J. Mater. Sci. 50 6180

    Article  CAS  Google Scholar 

  41. Jia L C, Zhao R N, Han J G, Sheng L S and Cai W P 2008 Geometries and Stabilities of the Carbon Clusters with the Rhodium Impurity: A Computational Investigation J. Phys. Chem. A 112 4375

    Article  CAS  Google Scholar 

  42. Dutta A and Mondal P 2016 Structural evolution, electronic and magnetic manners of small rhodium \(\text{ Rh }_{{n}}^{+/-}\) (\(n = 2-8\)) clusters: a detailed density functional theory study RSC Adv. 6 6946

    Article  CAS  Google Scholar 

  43. Delley B 2000 From molecules to solids with the \(\text{ DMOL }^{3}\) approach J. Chem. Phys. 113 7756

    Article  CAS  Google Scholar 

  44. Delley B 1990 An all-electron numerical method for solving the local density functional for polyatomic molecules J. Chem. Phys. 92 508

    Article  CAS  Google Scholar 

  45. Becke A D 1988 Density-functional exchange-energy approximation with correct asymptotic behavior Phys. Rev. A 38 3098

    Article  CAS  Google Scholar 

  46. Lee C, Yang W and Parr R G 1988 Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density Phys. Rev. B 37 785

    Article  CAS  Google Scholar 

  47. Delly B and Ellis D E 1982 Efficient and accurate expansion methods for molecules in local density models J. Chem. Phys. 76 1949

    Article  Google Scholar 

  48. Bader R F W 1990 In Atoms in Molecules: A Quantum Theory (Oxford, U.K.: Oxford University Press)

    Google Scholar 

  49. Bader R F W 1998 A Bond Path: A Universal Indicator of Bonded Interactions J. Phys. Chem. A 102 7314

    Article  CAS  Google Scholar 

  50. Bader R F W 1991 A Quantum Theory of Molecular Structure and Its Applications Chem. Rev. 91 893

    Article  CAS  Google Scholar 

  51. Keith T A 2013 AIMAll (Version 13.02.26), ed. TK Gristmill Software, Overland Park KS, USA. (http//:aim.tkgristmill.com)

  52. Matar S F, Pöttgen R, Al Alam A F and Ouaini N 2012 Chem. Phys. Lett. 5 75

    Google Scholar 

  53. Hughbanks T and Hoffmann R 1983 Chains of trans-edge-sharing molybdenum octahedra: metal-metal bonding in extended systems J. Am. Chem. Soc. 105 3528

    Article  CAS  Google Scholar 

  54. Dutta A and Mondal P 2017 Structural, electronic and catalytic properties of single magnesium atom doped small neutral \(\text{ Rh }_{{n}}\,(\text{ n }=2-8\)) clusters: Density functional study Comput. Comput. Theory Chem. 1115 284

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Department of Science and Technology (DST), New Delhi, India for financial support (SB/EMEQ-214/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paritosh Mondal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 297 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, A., Mondal, P. Density functional theory study of structure, electronic and magnetic properties of non-metal (Group 13) doped stable \(\hbox {Rh}_{\mathrm{n}}({\mathrm{n}}=2{-}8)\) clusters and their catalytic activities towards methanol activation. J Chem Sci 130, 2 (2018). https://doi.org/10.1007/s12039-017-1402-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-017-1402-3

Keywords

Navigation