Skip to main content
Log in

Computational investigation on the catalytic activity of Rh6 and Rh4Ru2 clusters towards methanol activation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Catalysis of molecular activation of small molecules through scission of strong chemical bonds is one of the major challenges faced by chemists. More specifically, activation of the strong C–H and O–H bonds of various alcohols, especially methanol, is one of the various important intermediate steps of key organic reactions. Our present work explores a suitable metal cluster catalyst towards methanol dissociation. In particular, we have examined the effect of ruthenium doping (Rh:Ru = 2:1) on the catalytic activity of Rh6 cluster towards methanol dissociation. Density functional theory-based calculations illustrate two competitive pathways for methanol dissociation, which are via O–H and C–H bond breaking. Both the pathways are found to be energetically favourable in the presence of bimetallic and mono-metallic clusters. Importantly, energy barrier for O–H bond dissociation reduces considerably in doped cluster as compared to pure Rh6 cluster and is smaller than the values reported for a number of other small metallic clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Blank B, Michlik S, Kempe R (2009) Synthesis of selectively mono-N-arylated aliphatic diamines via iridium-catalyzed amine alkylation. Adv Synth Catal 351(17):2903–2911. doi:10.1002/adsc.200900548

    Article  CAS  Google Scholar 

  2. Grigg R, Mitchell TRB, Sutthivaiyakit S, Tongpenyai N (1981) Oxidation of alcohols by transition metal complexes part V. Selective catalytic monoalkylation of arylacetonitriles by alcohols. Tetrahedron Lett 22(41):4107–4110. doi:10.1016/S0040-4039(01)82078

    Article  CAS  Google Scholar 

  3. Moran J, Preetz A, Mesch RA, Krische MJ (2011) Iridium-catalysed direct C–C coupling of methanol and allenes. Nat Chem 3(4):287–290. URL: http://www.nature.com/nchem/journal/v3/n4/abs/nchem.1001.html#supplementary-information

  4. Vancoillie J, Demuynck J, Sileghem L, Van De Ginste M, Verhelst S (2012) Comparison of the renewable transportation fuels, hydrogen and methanol formed from hydrogen, with gasoline: engine efficiency study. Int J Hydrogen Energy 37(12):9914–9924. doi:10.1016/j.ijhydene.2012.03.145

    Article  CAS  Google Scholar 

  5. Pan Y, Ye L, Ni B-J, Yuan Z (2012) Effect of pH on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers. Water Res 46(15):4832–4840. doi:10.1016/j.watres.2012.06.003

    Article  CAS  Google Scholar 

  6. Pan Y, Ni B-J, Bond PL, Ye L, Yuan Z (2013) Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment. Water Res 47(10):3273–3281. doi:10.1016/j.watres.2013.02.054

    Article  CAS  Google Scholar 

  7. Timmermans P, Van Haute A (1983) Denitrification with methanol: fundamental study of the growth and denitrification capacity of Hyphomicrobium sp. Water Res 17(10):1249–1255. doi:10.1016/0043-1354(83)90249-X

    Article  CAS  Google Scholar 

  8. Lettinga G (1995) Anaerobic digestion and wastewater treatment systems. Antonie Van Leeuwenhoek 67(1):3–28. doi:10.1007/bf00872193

    Article  CAS  Google Scholar 

  9. Claus G, Kutzner H (1985) Denitrification of nitrate and nitric acid with methanol as carbon source. Appl Microbiol Biotechnol 22(5):378–381. doi:10.1007/bf00582424

    Article  CAS  Google Scholar 

  10. Foglar L, Briški F (2003) Wastewater denitrification process—the influence of methanol and kinetic analysis. Process Biochem 39(1):95–103. doi:10.1016/S0032-9592(02)00318-7

    Article  CAS  Google Scholar 

  11. Li M, Duraiswamy K, Knobbe M (2012) Adsorption enhanced steam reforming of methanol for hydrogen generation in conjunction with fuel cell: process design and reactor dynamics. Chem Eng Sci 67(1):26–33. doi:10.1016/j.ces.2011.07.024

    Article  CAS  Google Scholar 

  12. Pérez-Hernández R, Gutiérrez-Martínez A, Espinosa-Pesqueira ME, Estanislao ML, Palacios J (2014) Effect of the bimetallic Ni/Cu loading on the ZrO2 support for H2 production in the autothermal steam reforming of methanol. Catalysis Today (0). doi:10.1016/j.cattod.2014.08.009

  13. Yi N, Si R, Saltsburg H, Flytzani-Stephanopoulos M (2010) Steam reforming of methanol over ceria and gold-ceria nanoshapes. Appl Catal B 95(1–2):87–92. doi:10.1016/j.apcatb.2009.12.012

    Article  CAS  Google Scholar 

  14. Chiarello GL, Aguirre MH, Selli E (2010) Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2. J Catal 273(2):182–190. doi:10.1016/j.jcat.2010.05.012

    Article  CAS  Google Scholar 

  15. Sharma S, Pollet BG (2012) Support materials for PEMFC and DMFC electrocatalysts—a review. J Power Sources 208:96–119. doi:10.1016/j.jpowsour.2012.02.011

    Article  CAS  Google Scholar 

  16. Motokura K, Nishimura D, Mori K, Mizugaki T, Ebitani K, Kaneda K (2004) A Ruthenium-grafted hydrotalcite as a multifunctional catalyst for direct α-alkylation of nitriles with primary alcohols. J Am Chem Soc 126(18):5662–5663. doi:10.1021/ja049181l

    Article  CAS  Google Scholar 

  17. Arndtsen BA, Bergman RG, Mobley TA, Peterson TH (1995) Selective intermolecular carbon-hydrogen bond activation by synthetic metal complexes in homogeneous solution. Acc Chem Res 28(3):154–162. doi:10.1021/ar00051a009

    Article  CAS  Google Scholar 

  18. Blum O, Stöckigt D, Schröder D, Schwarz H (1992) O–H bond activation in the gas phase: the reactions of water and methanol with [FeCH3]+. Angew Chem, Int Ed Engl 31(5):603–604. doi:10.1002/anie.199206031

    Article  Google Scholar 

  19. Owen JS, Labinger JA, Bercaw JE (2006) Kinetics and mechanism of methane, methanol, and dimethyl ether C − H activation with electrophilic platinum complexes. J Am Chem Soc 128(6):2005–2016. doi:10.1021/ja056387t

    Article  CAS  Google Scholar 

  20. Deo G, Wachs IE (1994) Reactivity of supported vanadium oxide catalysts: the partial oxidation of methanol. J Catal 146(2):323–334. doi:10.1006/jcat.1994.1071

    Article  CAS  Google Scholar 

  21. Schager F, Seevogel K, Pörschke K-R, Kessler M, Krüger C (1996) Reversible water and methanol activation at the PdSn bond1. J Am Chem Soc 118(51):13075–13076. doi:10.1021/ja962610y

    Article  CAS  Google Scholar 

  22. Blanksby SJ, Ellison GB (2003) Bond dissociation energies of organic molecules. Acc Chem Res 36(4):255–263. doi:10.1021/ar020230d

    Article  CAS  Google Scholar 

  23. Sun X, Sun X, Geng C, Zhao H, Li J (2014) Benchmark study on methanol C–H and O–H bond activation by bare [FeIVO]2+. J Phys Chem A 118(34):7146–7158. doi:10.1021/jp505662x

    Article  CAS  Google Scholar 

  24. Donald WA, McKenzie CJ, O’Hair RAJ (2011) C–H bond activation of methanol and ethanol by a high-spin FeIVO biomimetic complex. Angew Chem Int Ed 50(36):8379–8383. doi:10.1002/anie.201102146

    Article  CAS  Google Scholar 

  25. Zhang CJ, Hu P (2001) A first principles study of methanol decomposition on Pd(111): mechanisms for O–H bond scission and C–O bond scission. J Chem Phys 115(15):7182–7186. doi:10.1063/1.1405157

    Article  CAS  Google Scholar 

  26. Lee WT, Thomas F, Masel RI (1998) Methanol oxidation on (2 × 1)Pt(110): does the C–O or O–H bond break first? Surf Sci 418(2):479–483. doi:10.1016/S0039-6028(98)00761-4

    Article  CAS  Google Scholar 

  27. Wang D, Farquhar ER, Stubna A, Münck E, Que L (2009) A diiron(iv) complex that cleaves strong C–H and O–H bonds. Nat Chem 1 (2):145-150. doi:http://www.nature.com/nchem/journal/v1/n2/suppinfo/nchem.162_S1.html

  28. VnM S, Cojulun JA, Scherlis DNA (2010) Dissociation free energy profiles for water and methanol on TiO2 Surfaces. J Phys Chem C 114(26):11522–11526. doi:10.1021/jp102361z

    Article  Google Scholar 

  29. Desai SK, Neurock M, Kourtakis K (2002) A periodic density functional theory study of the dehydrogenation of methanol over Pt(111). J Phys Chem B 106(10):2559–2568. doi:10.1021/jp0132984

    Article  CAS  Google Scholar 

  30. Gu X-K, Li W-X (2010) First-principles study on the origin of the different selectivities for methanol steam reforming on Cu(111) and Pd(111). J Phys Chem C 114(49):21539–21547. doi:10.1021/jp107678d

    Article  CAS  Google Scholar 

  31. Lin S, Ma J, Zhou L, Huang C, Xie D, Guo H (2013) Influence of step defects on methanol decomposition: periodic density functional studies on Pd(211) and kinetic monte carlo simulations. J Phys Chem C 117(1):451–459. doi:10.1021/jp310600q

    Article  CAS  Google Scholar 

  32. Mei D, Xu L, Henkelman G (2009) Potential energy surface of methanol decomposition on Cu(110). J Phys Chem C 113(11):4522–4537. doi:10.1021/jp808211q

    Article  CAS  Google Scholar 

  33. Wang H, C-z H, L-y H, J-y L (2013) Decomposition and oxidation of methanol on Ir(111): a first-principles study. J Phys Chem C 117(9):4574–4584. doi:10.1021/jp311227f

    Article  CAS  Google Scholar 

  34. Mehmood F, Greeley J, Curtiss LA (2009) Density functional studies of methanol decomposition on subnanometer Pd clusters. J Phys Chem C 113(52):21789–21796. doi:10.1021/jp907772c

    Article  CAS  Google Scholar 

  35. Mehmood F, Greeley J, Zapol P, Curtiss LA (2010) Comparative density functional study of methanol decomposition on Cu4 and Co4 clusters†. J Phys Chem B 114(45):14458–14466. doi:10.1021/jp101594z

    Article  CAS  Google Scholar 

  36. Xie Y, Dong F, Heinbuch S, Rocca JJ, Bernstein ER (2009) Investigation of the reactions of small neutral iron oxide clusters with methanol. J Chem Phys 130 (11) doi:10.1063/1.3086724

  37. Reber AC, Roach PJ, Woodward WH, Khanna SN, Castleman AW (2012) Edge-induced active sites enhance the reactivity of large aluminum cluster anions with alcohols. J Phys Chem A 116(30):8085–8091. doi:10.1021/jp3047196

    Article  CAS  Google Scholar 

  38. Feyel S, Schröder D, Schwarz H (2009) Pronounced cluster-size effects: gas-phase reactivity of bare vanadium cluster cations Vn + (n = 1 − 7) toward methanol. J Phys Chem A 113(19):5625–5632. doi:10.1021/jp901565r

    Article  CAS  Google Scholar 

  39. Tenney SA, Cagg BA, Levine MS, He W, Manandhar K, Chen DA (2012) Enhanced activity for supported Au clusters: methanol oxidation on Au/TiO2(110). Surf Sci 606(15–16):1233–1243. doi:10.1016/j.susc.2012.04.002

    Article  CAS  Google Scholar 

  40. Bobuatong K, Karanjit S, Fukuda R, Ehara M, Sakurai H (2012) Aerobic oxidation of methanol to formic acid on Au20: a theoretical study on the reaction mechanism. Phys Chem Chem Phys 14(9):3103–3111. doi:10.1039/c2cp23446g

    Article  CAS  Google Scholar 

  41. Ichihashi M, Hanmura T, Yadav RT, Kondow T (2000) Adsorption and reaction of methanol molecule on nickel cluster ions, Nin + (n = 3 − 11). J Phys Chem A 104(51):11885–11890. doi:10.1021/jp0028610

    Article  CAS  Google Scholar 

  42. Tenney SA, Shah SI, Yan H, Cagg BA, Levine MS, Rahman TS, Chen DA (2013) Methanol reaction on Pt–Au clusters on TiO2(110): methoxy-induced diffusion of Pt. J Phys Chem C 117(51):26998–27006. doi:10.1021/jp409618j

    Article  CAS  Google Scholar 

  43. Zhao S, Tang H, Ren Y, Xu A, Wang J (2014) Density functional study of CH3OH binding on small cationic CunAum + (n + m < 5) clusters. Comput Theoret Chem 1037:14–21. doi:10.1016/j.comptc.2014.03.020

    Article  CAS  Google Scholar 

  44. Oh SH, Carpenter JE (1986) Platinum-rhodium synergism in three-way automotive catalysts. J Catal 98(1):178–190. doi:10.1016/0021-9517(86)90307-6

    Article  CAS  Google Scholar 

  45. Bouriazos A, Mouratidis K, Psaroudakis N, Papadogianakis G (2008) Catalytic conversions in aqueous media. Part 2. A Novel and highly efficient biphasic hydrogenation of renewable methyl esters of linseed and sunflower oils to high quality biodiesel employing Rh/TPPTS complexes. Catal Lett 121(1–2):158–164. doi:10.1007/s10562-007-9314-3

    Article  CAS  Google Scholar 

  46. Engler B, Koberstein E, Schubert P (1989) Automotive exhaust gas catalysts: surface structure and activity. Appl Catal 48(1):71–92. doi:10.1016/S0166-9834(00)80267-5

    Article  CAS  Google Scholar 

  47. Piscina PRDL, Homs N (2008) Use of biofuels to produce hydrogen (reformation processes). Chem Soc Rev 37(11):2459–2467. doi:10.1039/b712181b

    Article  Google Scholar 

  48. Cao D, Wieckowski A, Inukai J, Alonso-Vante N (2006) Oxygen reduction reaction on ruthenium and rhodium nanoparticles modified with selenium and Sulfur. J Electrochem Soc 153(5):A869–A874. doi:10.1149/1.2180709

    Article  CAS  Google Scholar 

  49. Vayssilov GN, Petrova GP, Shor EAI, Nasluzov VA, Shor AM, Petkov PS, Rosch N (2012) Reverse hydrogen spillover on and hydrogenation of supported metal clusters: insights from computational model studies. Phys Chem Chem Phys 14(17):5879–5890. doi:10.1039/c2cp23648f

    Article  CAS  Google Scholar 

  50. Ivanova Shor EA, Nasluzov VA, Shor AM, Vayssilov GN, Rösch N (2007) Reverse hydrogen spillover onto zeolite-supported metal clusters: an embedded cluster density functional study of models M6 (M = Rh, Ir, or Au). J Phys Chem C 111(33):12340–12351. doi:10.1021/jp0711287

    Article  Google Scholar 

  51. Argo AM, Gates BC (2003) MgO-supported Rh6 and Ir6: structural characterization during the catalysis of ethene hydrogenation. J Phys Chem B 107(23):5519–5528. doi:10.1021/jp026717l

    Article  CAS  Google Scholar 

  52. Shetty S, van Santen RA, Stevens PA, Raman S (2010) Molecular steps for the syngas conversion on the Rh6 cluster. J Mol Catal A: Chem 330(1–2):73–87. doi:10.1016/j.molcata.2010.07.004

    Article  CAS  Google Scholar 

  53. Kiran V, Ravikumar T, Kalyanasundaram NT, Krishnamurty S, Shukla AK, Sampath S (2010) Electro-oxidation of borohydride on rhodium, iridium, and rhodium-iridium bimetallic nanoparticles with implications to direct borohydride fuel cells. J Electrochem Soc 157(8):B1201–B1208. doi:10.1149/1.3442372

    Article  CAS  Google Scholar 

  54. Serna P, Yardimci D, Kistler JD, Gates BC (2014) Formation of supported rhodium clusters from mononuclear rhodium complexes controlled by the support and ligands on rhodium. Phys Chem Chem Phys 16(3):1262–1270. doi:10.1039/c3cp53057d

    Article  CAS  Google Scholar 

  55. Hamilton SM, Hopkins WS, Harding DJ, Walsh TR, Haertelt M, Kerpal C, Gruene P, Meijer G, Fielicke A, Mackenzie SR (2011) Infrared-induced reactivity of N2O on small gas-phase rhodium clusters. J Phys Chem A 115(12):2489–2497. doi:10.1021/jp201171p

    Article  CAS  Google Scholar 

  56. Torres MB, Aguilera-Granja F, Balbás LC, Vega A (2011) Ab initio study of the adsorption of NO on the Rh6 + cluster. J Phys Chem A 115(30):8350–8360. doi:10.1021/jp202511w

    Article  CAS  Google Scholar 

  57. Barreteau C, Spanjaard D, Desjonquères MC (1998) Electronic structure and total energy of transition metals from an spd tight-binding method: application to surfaces and clusters of Rh. Phys Rev B 58(15):9721–9731

    Article  CAS  Google Scholar 

  58. Jinlong Y, Toigo F, Kelin W (1994) Structural, electronic, and magnetic properties of small rhodium clusters. Phys Rev B 50(11):7915–7924

    Article  CAS  Google Scholar 

  59. Reddy BV, Nayak SK, Khanna SN, Rao BK, Jena P (1999) Electronic structure and magnetism of Rhn (n = 2–13) clusters. Phys Rev B 59(7):5214–5222

    Article  CAS  Google Scholar 

  60. Zhi-Qiang L, Jing-Zhi Y, Ohno K, Kawazoe Y (1995) Calculations on the magnetic properties of rhodium clusters. J Phys: Condens Matter 7(1):47

    Google Scholar 

  61. Volkan Ortalanl AU, Gates BC, Browning ND (2010) Towards full-structure determination of bimetallic nanoparticles with an aberration-corrected electron microscope. Nat Nano 5(12):843–847

    Article  Google Scholar 

  62. Bergamaski K, Gonzalez ER, Nart FC (2008) Ethanol oxidation on carbon supported platinum-rhodium bimetallic catalysts. Electrochim Acta 53(13):4396–4406. doi:10.1016/j.electacta.2008.01.060

    Article  CAS  Google Scholar 

  63. de Souza JPI, Queiroz SL, Bergamaski K, Gonzalez ER, Nart FC (2002) Electro-oxidation of ethanol on Pt, Rh, and PtRh electrodes. A study using DEMS and in-situ FTIR techniques. J Phys Chem B 106(38):9825–9830. doi:10.1021/jp014645c

    Article  Google Scholar 

  64. Shubina TE, Koper MTM (2002) Quantum-chemical calculations of CO and OH interacting with bimetallic surfaces. Electrochim Acta 47(22–23):3621–3628. doi:10.1016/S0013-4686(02)00332-8

    Article  CAS  Google Scholar 

  65. McNicol BD, Rand DAJ, Williams KR (1999) Direct methanol–air fuel cells for road transportation. J Power Sources 83(1–2):15–31. doi:10.1016/S0378-7753(99)00244-X

    Article  CAS  Google Scholar 

  66. Sen Gupta S, Datta J (2006) A comparative study on ethanol oxidation behavior at Pt and PtRh electrodeposits. J Electroanal Chem 594(1):65–72. doi:10.1016/j.jelechem.2006.05.022

    Article  CAS  Google Scholar 

  67. Tao F, Grass ME, Zhang Y, Butcher DR, Aksoy F, Aloni S, Altoe V, Alayoglu S, Renzas JR, Tsung C-K, Zhu Z, Liu Z, Salmeron M, Somorjai GA (2010) Evolution of structure and chemistry of bimetallic nanoparticle catalysts under reaction conditions. J Am Chem Soc 132(25):8697–8703. doi:10.1021/ja101502t

    Article  CAS  Google Scholar 

  68. Tzi-Yi W-Y, Jow J-J, Kuo C-W, Tsai C-J, Chen P-R, Chen H-R (2012) Co-electrodeposition of platinum and rhodium in Poly(3,4-ethylenedioxythiophene)-Poly(styrene sulfonic acid) as Electrocatalyst for methanol oxidation. Int J Electrochem Sci 7(9):8076–8090

    Google Scholar 

  69. Li M, Zhou WP, Marinkovic NS, Sasaki K, Adzic RR (2013) The role of rhodium and tin oxide in the platinum-based electrocatalysts for ethanol oxidation to CO2. Electrochim Acta 104:454–461. doi:10.1016/j.electacta.2012.10.046

    Article  CAS  Google Scholar 

  70. Hahn F, Beden B, Lamy C (1986) In situ infrared reflectance spectroscopic study of the adsorption of formic acid at a rhodium electrode. J Electroanal Chem Interfacial Electrochem 204(1–2):315–327. doi:10.1016/0022-0728(86)80529-0

    Article  CAS  Google Scholar 

  71. Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms: part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J Electroanal Chem Interfacial Electrochem 60(3):267–273. doi:10.1016/S0022-0728(75)80261-0

    Article  CAS  Google Scholar 

  72. Guo JW, Zhao TS, Prabhuram J, Chen R, Wong CW (2005) Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells. Electrochim Acta 51(4):754–763. doi:10.1016/j.electacta.2005.05.056

    Article  CAS  Google Scholar 

  73. Löffler MS, Natter H, Hempelmann R, Wippermann K (2003) Preparation and characterisation of Pt–Ru model electrodes for the direct methanol fuel cell. Electrochim Acta 48(20–22):3047–3051. doi:10.1016/S0013-4686(03)00375-X

    Article  Google Scholar 

  74. Friedrich KA, Geyzers KP, Linke U, Stimming U, Stumper J (1996) CO adsorption and oxidation on a Pt(111) electrode modified by ruthenium deposition: an IR spectroscopic study. J Electroanal Chem 402(1–2):123–128. doi:10.1016/0022-0728(95)04237-7

    Article  Google Scholar 

  75. Toshima N, Wang Y (1994) Preparation and catalysis of novel colloidal dispersions of copper/noble metal bimetallic clusters. Langmuir 10(12):4574–4580. doi:10.1021/la00024a031

    Article  CAS  Google Scholar 

  76. Liu X, Tian D, Meng C (2012) DFT study on stability and structure of bimetallic AumPdn (N = 38, 55, 79, N = m+n, m/n ≈ 2:1 and 5:1) clusters. Comput Theoret Chem 999:246–250. doi:10.1016/j.comptc.2012.09.012

    Article  CAS  Google Scholar 

  77. Sahiner N, Ozay O, Aktas N, Inger E, He J (2011) The on demand generation of hydrogen from Co-Ni bimetallic nano catalyst prepared by dual use of hydrogel: as template and as reactor. Int J Hydrogen Energy 36(23):15250–15258. doi:10.1016/j.ijhydene.2011.08.082

    Article  CAS  Google Scholar 

  78. Wu Q, Eriksen WL, Duchstein LDL, Christensen JM, Damsgaard CD, Wagner JB, Temel B, Grunwaldt J-D, Jensen AD (2014) Influence of preparation method on supported Cu-Ni alloys and their catalytic properties in high pressure CO hydrogenation. Catal Sci Technol 4(2):378–386. doi:10.1039/c3cy00546a

    Article  CAS  Google Scholar 

  79. Rösch N, Petrova G, Petkov P, Genest A, Krüger S, Aleksandrov H, Vayssilov G (2011) Impurity atoms on small transition metal clusters. Insights from density functional model studies. Top Catal 54(5–7):363–377. doi:10.1007/s11244-011-9667-0

    Article  Google Scholar 

  80. Mainardi DS, Balbuena PB (2003) Hydrogen and oxygen adsorption on Rhn (n = 1 − 6) clusters. J Phys Chem A 107(48):10370–10380. doi:10.1021/jp036093z

    Article  CAS  Google Scholar 

  81. Frisch MJT, G W, Schlegel HB, Scuseria G. E, Robb MAC, J R, Scalmani G, Barone, V, Mennucci,, B, Petersson GAN, H, Caricato, M, Li, X, Hratchian HP, Izmaylov AFB, J, Zheng, G, Sonnenberg JL, Hada M, Ehara MT, K, Fukuda, R, Hasegawa J, Ishida M, Nakajima T, Honda YK, O, Nakai, H, Vreven, T, Montgomery, JA, Jr, Peralta PEO, F, Bearpark M, Heyd JJ, Brothers, E, Kudin KNS, V N, Kobayashi R, Normand J, Raghavachari KR, A, Burant, JC, Iyengar SS, Tomasi J, Cossi MR, N, Millam, N. J, Klene, M, Knox, JE, Cross JB, Bakken VA, C, Jaramillo, J, Gomperts, R, Stratmann, R E, Yazyev OA, A. J, Cammi, R, Pomelli, C, Ochterski, J. W, Martin RLM, K, Zakrzewski, V. G, Voth GA, Salvador P, Dannenberg JJD, S, Daniels AD, Farkas Ö, Ortiz, JV, Cioslowski JF, D J (2009) Gaussian 09, Revision A.1. Gaussian, Inc, Wallingford CT

  82. Srivastava AK, Misra N (2014) Structures, stabilities, electronic and magnetic properties of small RhxMny (x + y = 2–4) clusters. Comput Theoret Chem 1047:1–5. doi:10.1016/j.comptc.2014.08.008

    Article  CAS  Google Scholar 

  83. Harding DJ, Mackenzie SR, Walsh TR (2009) Density functional theory calculations of vibrational spectra of rhodium oxide clusters. Chem Phys Lett 469(1–3):31–34. doi:10.1016/j.cplett.2008.12.053

    Article  CAS  Google Scholar 

  84. Da Silva JLF, Piotrowski MJ, Aguilera-Granja F (2012) Hybrid density functional study of small Rhn (n = 2–15) clusters. Phys Rev B 86(12):125430

    Article  Google Scholar 

  85. Camacho-Mendoza R, Aquino-Torres E, Cruz-Borbolla J, Alvarado-Rodríguez J, Olvera-Neria O, Narayanan J, Pandiyan T (2014) DFT analysis: fe4 cluster and Fe(110) surface interaction studies with pyrrole, furan, thiophene, and selenophene molecules. Struct Chem 25(1):115–126. doi:10.1007/s11224-013-0254-9

    Article  CAS  Google Scholar 

  86. Wang H-Q, Li H-F (2014) A combined stochastic search and density functional theory study on the neutral and charged silicon-based clusters MSi6 (M = La, Ce, Yb and Lu). RSC Adv 4(56):29782–29793. doi:10.1039/c4ra03788j

    Article  CAS  Google Scholar 

  87. Chan B, Yim W-L (2013) Accurate computation of cohesive energies for small to medium-sized gold clusters. J Chem Theory Comput 9(4):1964–1970. doi:10.1021/ct400047y

    Article  CAS  Google Scholar 

  88. Yumura T, Nanba T, Torigoe H, Kuroda Y, Kobayashi H (2011) Behavior of Ag3 clusters Inside a nanometer-sized space of ZSM-5 zeolite. Inorg Chem 50(14):6533–6542. doi:10.1021/ic2001514

    Article  CAS  Google Scholar 

  89. Yang H-W, Lu W-C, Zhao L-Z, Qin W, Yang W-H, Xue X-Y (2013) Structures and electronic properties of the SiAun (n = 17–20) clusters. J Phys Chem A 117(13):2672–2677. doi:10.1021/jp3004807

    Article  CAS  Google Scholar 

  90. Ochterski JW (2000) Thermochemistry in gaussian. Gaussian Inc, Pittsburgh, PA, pp 1–17

    Google Scholar 

  91. McQuarrie DA, Simon JD (1999) Molecular thermodynamics. University Science Books Sausalito, CA

    Google Scholar 

  92. Geudtner G, Calaminici P, Carmona-Espíndola J, del Campo JM, Domínguez-Soria VD, Moreno RF, Gamboa GU, Goursot A, Köster AM, Reveles JU, Mineva T, Vásquez-Pérez JM, Vela A, Zúñinga-Gutierrez B, Salahub DR (2012) deMon2 k. Wiley Interdisciplinary Reviews: Computational Molecular Science 2 (4):548-555. doi:10.1002/wcms.98

  93. Aguilera-Granja F, Balbás LC, Vega A (2009) Study of the structural and electronic properties of RhN and RuN Clusters (N < 20) within the density functional theory. J Phys Chem A 113(48):13483–13491. doi:10.1021/jp905188t

    Article  CAS  Google Scholar 

  94. Beltrán M, Buendía Zamudio F, Chauhan V, Sen P, Wang H, Ko Y, Bowen K (2013) Ab initio and anion photoelectron studies of Rhn (n = 1–9) clusters. Eur Phys J D 67(3):1–8. doi:10.1140/epjd/e2013-30547-2

    Article  Google Scholar 

  95. Chien C-H, Blaisten-Barojas E, Pederson MR (1998) Magnetic and electronic properties of rhodium clusters. Phys Rev A 58(3):2196–2202

    Article  CAS  Google Scholar 

  96. Mehmood F, Rankin RB, Greeley J, Curtiss LA (2012) Trends in methanol decomposition on transition metal alloy clusters from scaling and Bronsted–Evans–Polanyi relationships. Phys Chem Chem Phys 14(24):8644–8652. doi:10.1039/c2cp00052k

    Article  CAS  Google Scholar 

  97. Frelink T, Visscher W, van Veen JAR (1995) On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt. Surf Sci 335:353–360. doi:10.1016/0039-6028(95)00412-2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Centre of excellence in Computational Chemistry at CSIR–NCL, Pune, for the calculations presented and the CSIR XII 5-year plan for a Multiscale Simulation of Materials (MSM) project grant. Sourav Pal acknowledges grant from SSB project of CSIR and the J. C. Bose Fellowship grant of DST towards partial fulfilment of this work. Kamalika Ghatak acknowledges Susanta Das and Dar Manzoor of CSIR-NCL for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourav Pal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3676 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghatak, K., Sengupta, T., Krishnamurty, S. et al. Computational investigation on the catalytic activity of Rh6 and Rh4Ru2 clusters towards methanol activation. Theor Chem Acc 134, 1597 (2015). https://doi.org/10.1007/s00214-014-1597-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1597-z

Keywords

Navigation