Skip to main content
Log in

Electronic and Magnetic Properties of Os-Doped Rhodium Clusters: a Theoretical Study

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The stability and electronic and magnetic properties of RhnOs (n= 2–12) clusters in their most stable configurations were systematically studied by using density functional theory (DFT) at M06L/aug-cc-pVDZ level. Calculation of the second-order difference of energies and fragmentation energies exhibited that Rh3Os, Rh5Os, Rh7Os, and Rh9Os clusters are more stable than any other clusters. The calculated HOMO-LUMO energy gaps of the RhnOs clusters are found to be in the range of 0.018 to 0.299 eV, implying that the metallic behavior can appear in these clusters. Accordingly, the RhnOs clusters can be employed as heterogeneous nanocatalysts in many chemical reactions. The local Fukui function (\(f_{k}^{-} )\) has also been calculated, and the obtained results reveal that the highest \(f_{k}^{-} \) values are predicted for the Rh atoms. Therefore, the Rh atoms in the clusters are considered the most reactive sites that undergo reactions with electrophilic reagents. The analysis of the magnetic properties of the RhnOs clusters shows that the total magnetic moment per atom of these clusters varies from 0.67 to 1.75 µB/atom. And, the PDOS analysis reveals that the d orbitals play a crucial role for the magnetism of the RhnOs clusters, and the contribution of the s and p orbitals is small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schmid, G.: Large clusters and colloids. Metals in the embryonic state. Chem. Rev. 92, 1709–1727 (1992)

    Article  Google Scholar 

  2. Lewis, L.N.: Chemical catalysis by colloids and clusters. Chem. Rev. 93, 2693–2730 (1993)

    Article  Google Scholar 

  3. Xu, X.S., Yin, S.Y., Moro, R., de Heer, W.A.: Magnetic moments and adiabatic magnetization of free cobalt clusters. Phys. Rev. Lett. 95, 237209 (2005)

    Article  ADS  Google Scholar 

  4. Parks, E.K., Klots, T.D., Riley, S.J.: Chemical probes of metal cluster ionization potentials. J. Chem. Phys. 92, 3813–3826 (1990)

    Article  ADS  Google Scholar 

  5. Cox, A.J., Louderback, J.G., Apsel, S.E., Bloomfield, L.A.: Magnetism in 4d-transition metal clusters. Phys. Rev. B 49, 12295–12298 (1994)

    Article  ADS  Google Scholar 

  6. Soltani, A., Boudjahem, A.: Stabilities, electronic and magnetic properties of small Rhn (n = 2-12) clusters: a DFT approach. Comput. Theor. Chem. 1047, 6–14 (2014)

    Article  Google Scholar 

  7. Yonezawa, T., Imamura, K., Kimizuka, N.: Direct preparation and size control of palladium nanoparticle hydrosols by water-soluble isocyanide ligands. Langmuir 17, 4701–4703 (2001)

    Article  Google Scholar 

  8. Zhang, J.Y., Fang, Q., Kenyon, A.J., Boyd, I.W.: Visible photoluminescence from nanocrystalline Ge grwn at room temperature by photo-oxidation of SiGe using a 126 nm lamp. Appl. Surf. Sci. 208–209, 364–368 (2003)

    ADS  Google Scholar 

  9. Dong, C.D., Gong, X.G.: Magnetism enhanced layer-like structure of small cobalt clusters. Phys. Rev. B 78, 020409–020412 (2008)

    Article  ADS  Google Scholar 

  10. Teranishi, T., Miyake, M.: Size control of palladium nanoparticles and their crystal structures. Chem. Mater. 10, 594–600 (1998)

    Article  Google Scholar 

  11. Gopidas, K.R., Whitesell, J.M., Fox, M.A.: Synthesis, characterization, and catalytic applications of a palladium-nanoparticles-cored dendrimer. Nano. Lett. 3, 1757–1760 (2003)

    Article  ADS  Google Scholar 

  12. Boudjahem, A., Chettibi, M., Monteverdi, S., Bettahar, M.: Acetylene hydrogenation over NiCu nanoparticles supported on silica prepared by aqueous hydrazine reduction. J. Nanosci. Nanotechnol. 9, 3546–3554 (2009)

    Article  Google Scholar 

  13. Boudjahem, A., Redjel, A., Mokrane, T.: Preparation, characterization and performance of Pd/SiO2 catalyst for benzene catalytic hydrogenation. J. Ind. Eng. Chem. 18, 303–308 (2012)

    Article  Google Scholar 

  14. Chettibi, M., Boudjahem, A., Bettahar, M.: Synthesis of Ni/SiO2 nanoparticles for catalytic benzene hydrogenation. Transit. Metal. Chem. 36, 163–169 (2011)

    Article  Google Scholar 

  15. Boudjahem, A., Bouderbala, W., Bettahar, M.: Benzene hydrogenation over Ni-Cu/SiO2 catalysts prepared by aqueous hydrazine reduction. Fuel. Process. Technol. 92, 500–506 (2011)

    Article  Google Scholar 

  16. Sidhpuria, K.B., Patel, H.A., Parikh, P.A., Bahadur, P., Bajaj, H.C., Jasra, R.V.: Rhodium nanoparticles intercalated into montmorillonite for hydrogenation of aromatic compounds in the presence of thiophene. Appl. Clay. Sci. 42, 386–390 (2009)

    Article  Google Scholar 

  17. Sanchez, A., Fang, M., Ahmed, A., Sanchez-Delgado, R.A.: Hydrogenation of arenes, N-heteroaromatic compounds, and alkenes catalyzed by rhodium nanoparticles supported on magnesium oxide. Appl. Catal. A 477, 117–124 (2014)

    Article  Google Scholar 

  18. Campos, C.H., Rosenberg, E., Fierro, J.L., Urbano, B.F., Rivas, B.L., Torres, C.C., Reyes, P.A.: Hydrogenation of nitro-compounds over rhodium catalysts supported on poly(acrylic acid)/Al2O3 composites. Appl. Catal. A 489, 280–291 (2015)

    Article  Google Scholar 

  19. Behr, A., Brunsch, Y., Lux, A.: Rhodium nanoparticles as catalysts in the hydroformylation of 1-dodecene and their recycling in thermomorphic solvent systems. Tetrahedron. Lett. 53, 2680–2683 (2012)

    Article  Google Scholar 

  20. Bruss, A.J., Gelesky, M.A., Machado, G., Dupont, J.: Rh(0) nanoparticles as catalyst precursors for the solventless hydroformylation of olefins. J. Mol. Catal. A 252, 212–218 (2006)

    Article  Google Scholar 

  21. Yoon, T.J., Kim, J.I., Lee, J.K.: Rh-based olefin hydroformylation catalysts and the change of their catalytic activity depending on the size of immobilizing supporters. Inorg. Chim. Acta. 345, 228–234 (2003)

    Article  Google Scholar 

  22. Han, D., Li, X., Zhang, H., Liu, Z., Hu, G., Li, C.: Asymmetric hydroformylation of olefins catalyzed by rhodium nanoparticles chirally stabilized with (R)-BINAP ligan. J. Mol. Catal. A 283, 15–22 (2008)

    Article  Google Scholar 

  23. Cox, A.J., Louderback, J.G., Bloomfield, L.A.: Experimental observation of magnetism in rhodium clusters. Phys. Rev. Lett. 71, 923–926 (1993)

    Article  ADS  Google Scholar 

  24. Bertoli, M., Choualeb, A., Lough, A.J., Moore, B., Spasyuk, D., Gusev, D.G.: Osmium and ruthenium catalysts for dehydrogenation of alcohols. Organometallics 30, 3479–3482 (2011)

    Article  Google Scholar 

  25. Mendes, F.M., Schmal, M.: The cyclohexanol dehydrogenation on Rh-Cu/Al2O3 catalysts: chemisorpion and reaction. Appl. Catal. A: Gen. 163, 153–164 (1997)

    Article  Google Scholar 

  26. Trunschke, A., Ewald, H., Gutschick, D., Miessner, H., Skupin, M., Walther, B., Bottcher, H.C.: New bimetallic Rh-Mo and Rh-W clusters as precursors for selective heterogeneous CO hydrogenation. J. Mol. Catal. 56, 95–106 (1989)

    Article  Google Scholar 

  27. Zitoun, D., Amiens, C., Chaudret, B.: Synthesis and magnetism of CoxRh1−x and CoxRu1−x nanoparticles. J. Phys. Chem. B 107, 6997–7005 (2003)

    Article  Google Scholar 

  28. Rakap, M.: The highest catalytic activity in the hydrolysis of ammonia borane by poly(N-vinyl-2-pyrrolidone)-protected palladium-rhodium nanoparticles for hydrogen generation. Appl. Catal. B 163, 129–134 (2015)

    Article  Google Scholar 

  29. Jiang, H.-L., Xu, Q.: Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catal. Today 170, 56–63 (2011)

    Article  Google Scholar 

  30. Shen, J., Cao, N., Liu, Y., He, M., Hu, K., Luo, W., Cheng, G.: Hydrolytic dehydrogenation of amine-boranes catalyzed graphene supported rhodium-nickel nanoparticles. Catal. Commun. 59, 14–20 (2015)

    Article  Google Scholar 

  31. Durap, F., Zahmakiran, M., Ozkar, S.: Water soluble laurate-stabilized rhodium (0) nanoclusters catalyst with unprecedented catalytic lifetime in the hydrolytic dehydrogenation of ammonia borane. Appl. Catal. A 369, 53–59 (2009)

    Article  Google Scholar 

  32. Srivastava, A.K., Misra, N.: Structures, stabilities, electronic and magnetic properties of small RhxMny (x + y = 2-4) clusters. Comput. Theor. Chem. 1047, 1–5 (2014)

    Article  Google Scholar 

  33. Mokkath, J.H., Pastor, G.M.: First-principles study of structural, magnetic, and electronic properties of small Fe-Rh alloy clusters. Phys. Rev. B 85, 054407 (2012)

    Article  ADS  Google Scholar 

  34. Dennler, S., Morillo, J., Pastor, G.M.: Calculation of magnetic and structural properties of small Co-Rh clusters. Surf. Sci. 532–535, 334–340 (2003)

    Article  ADS  Google Scholar 

  35. Lv, J., Bai, X., Jia, J.F., Xu, X.H., Wu, H.S.: Structural, electronic and magnetic properties of ConRh clusters from density functional calculations. Physica B. 407, 14–21 (2012)

    Article  ADS  Google Scholar 

  36. Yang, J.X., Wei, C.F., Guo, J.J.: Density functional study of AunRh (n = 1-8) clusters. Physica B. 405, 4892–4896 (2010)

    Article  ADS  Google Scholar 

  37. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, revision D.01. Gaussian, Inc., Wallingford (2013)

    Google Scholar 

  38. Zhao, Y., Truhlar, D.G.: A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 125, 194101 (2006)

    Article  ADS  Google Scholar 

  39. Zhao, Y., Truhlar, D.G.: Density functionals with broad applicability in chemistry. Acc. Chem. Res. 41, 157–167 (2008)

    Article  Google Scholar 

  40. Dunning, T.H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989)

    Article  ADS  Google Scholar 

  41. Khetrapal, N.S., Jian, T., Lopez, G.V., Pande, S., Wang, L.-S., Zeng, X.C.: Probing the structural evolution of gold-aluminum bimetallic clusters (Au2Aln−, n = 3-11) using photoelectron spectroscopy and theoretical calculations. J. Phys. Chem. C 121, 18234–18243 (2017)

    Article  Google Scholar 

  42. Khetrapal, N.S., Jian, T., Pal, R., Lopez, G.V., Pande, S., Wang, L.-S., Zeng, X.C.: Probing the structures of gold-aluminum alloy clusters AuxAly−: a joint experimental and theoretical study. Nanoscale 8, 9805–9814 (2016)

    Article  ADS  Google Scholar 

  43. Khetrapal, N.S., Satya, S.S., Zeng, X.C.: Structural evolution of gold clusters Aun− (n = 21-25), revised. J. Phys. Chem. A 121, 2466–2474 (2017)

    Article  Google Scholar 

  44. Beltran, M.R., Zamudio, F.B., Chauhan, V., Sen, P., Wang, H., Ko, Y.J., Bowen, K.: Ab initio and anion photoelectron studies of Rhn (n = 1-9) clusters. Eur. Phys. J. D 67, 63–70 (2013)

    Article  ADS  Google Scholar 

  45. Chien, C.H., Blaisten-Barojas, E., Pederson, M.R.: Magnetic and electronic properties of rhodium clusters. Phys. Rev A 58, 2196–2202 (1998)

    Article  ADS  Google Scholar 

  46. Gingerich, K.A., Cocke, D.L.: Thermodynamic confirmation for the high stability of gaseous TiRh as predicted by the Brewer-Engel metallic theory and the dissociation energy of diatomic rhodium. J. Chem. Soc. Chem. Commun. 1, 536–536 (1972)

    Article  Google Scholar 

  47. Jules, J.L., Lombardi, J.R.: Transition metal dimer internuclear distances from measured force constants. J. Phys. Chem A 107, 1268–1273 (2003)

    Article  Google Scholar 

  48. Morse, M.D.: Clusters of transition-metal atoms. Chem. Rev. 86, 1049–1109 (1986)

    Article  Google Scholar 

  49. Du, J., Sun, X., Wang, H.: The confirmation of accurate combination of functional and basis set for transition-metal dimers: Fe2, Co2, Ni2, Ru2, Rh2, Pd2, Os2, Ir2, and Pt2. Int. J. Quantum. Chem. 108, 1517–1517 (2008)

    Article  Google Scholar 

  50. Wu, Z.J., Han, B., Dai, Z.W., Jin, P.C.: Electronic properties of rhenium, osmium and iridium dimmers by density functional methods. Chem. Phys. Lett. 403, 367–371 (2005)

    Article  ADS  Google Scholar 

  51. Cimpeanu, V., Kocevar, M., Parvulescu, V., Leitner, W.: Preparation of rhodium nanoparticles in carbon dioxide induced ionic liquids and their application to selective hydrogenation. Angew. Chem. Int. 48, 1085–1088 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel-Ghani Boudjahem.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudjahem, AG., Boulbazine, M. & Chettibi, M. Electronic and Magnetic Properties of Os-Doped Rhodium Clusters: a Theoretical Study. J Supercond Nov Magn 31, 3119–3131 (2018). https://doi.org/10.1007/s10948-018-4579-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4579-x

Keywords

Navigation