Journal of Chemical Sciences

, Volume 129, Issue 5, pp 553–559 | Cite as

Silver(I) and copper(II)-imidazolium carboxylates: Efficient catalysts in Ullmann coupling reactions

Regular Article


The silver(I) and copper(II)-imidazolium carboxylate coordination assemblies were derived from the reaction between corresponding carboxylic acid ligands and metal salts. These new metal derivatives depict a novel structural motif with variable chemical and thermal properties. These metal complexes act as potential catalysts in Ullmann coupling reactions. The imidazolium linker present in these complexes plays a role as both ligand and counter ion to balance the metal charge.
Graphical Abstract

Ullmann coupling reactions mediated by Silver(I) and copper(II)-coordination polymers are reported.


Copper(II) Silver(I) Coordination polymer Imidazolium ion Ullmann coupling. 



We gratefully acknowledge the DST-FT (SR /FT /CS-94 /2010) for financial support. CNB thanks UGC for the fellowship.

Supplementary material

12039_2017_1262_MOESM1_ESM.docx (590 kb)
(DOCX 590 KB)


  1. 1.
    Sen S, Nair N N, Yamada T, Kitagawa H and Bharadwaj P K 2012 High Proton Conductivity by a Metal–Organic Framework Incorporating Zn8O Clusters with Aligned Imidazolium Groups Decorating the Channels J. Am. Chem. Soc. 134 19432CrossRefGoogle Scholar
  2. 2.
    Ezugwu C I, Kabir N A, Yusubov M and Verpoort F 2015 Metal–Organic Frameworks Containing N-Heterocyclic Carbenes and their Precursors Coord Chem. Rev. 307 188Google Scholar
  3. 3.
    (a) Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T and Hupp J T 2009 Metal–Organic Framework Materials as Catalysts Chem. Soc. Rev. 38 1450; (b) Lee J Y, Roberts J M, Farha O K, Sarjeant A A, Scheidt K A and Hupp J T 2009 Synthesis and Gas Sorption Properties of a Metal-Azolium Framework (MAF) Material Inorg. Chem. 48 9971; (c) Nickerl G, Notzon A, Heitbaum M, Senkovska I, Glorius F and Kaskel S 2013 Selective Adsorption Properties of Cationic Metal–Organic Frameworks Based on Imidazolic Linker Cryst. Growth Des. 13 198; (d) Wang S, Yang Q, Zhang J, Zhang X, Zhao C, Jiang L and Su C-Y 2013 Two-Dimensional Charge-Separated Metal–Organic Framework for Hysteretic and Modulated Sorption Inorg. Chem. 52 4198; (e) Sen S, Neogi S, Aijaz A, Xu Q and Bharadwaj P K 2014 Construction of Non-Interpenetrated Charged Metal–Organic Frameworks with Doubly Pillared Layers: Pore Modification and Selective Gas Adsorption Inorg. Chem. 53 7591; (f) Sen S, Yamada T, Kitagawa H and Bharadwaj P K 2014 3D Coordination Polymer of Cd(II) with an Imidazolium-Based Linker Showing Parallel Polycatenation Forming Channels with Aligned Imidazolium Groups Cryst. Growth Des. 14 1240Google Scholar
  4. 4.
    Kong G -Q, Xu X, Zou C and Wu C -D 2011 Two Metal–Organic Frameworks Based on a Double Azolium Derivative: Post-Modification and Catalytic Activity Chem. Commun. 47 11005CrossRefGoogle Scholar
  5. 5.
    Kong G -Q, Ou S, Zou C and Wu C -D 2012 Assembly and Post-Modification of a Metal–Organic Nanotube for Highly Efficient Catalysis J. Am. Chem. Soc. 134 19851CrossRefGoogle Scholar
  6. 6.
    Burgun A, Crees R S, Cole M L, Doonan C J and Sumby C J 2014 A 3-D diamondoid MOF catalyst based on in situ generated [Cu(L)2] N-heterocyclic carbene (NHC) linkers: Hydroboration of CO2 Chem. Commun. 50 11760CrossRefGoogle Scholar
  7. 7.
    Lalonde M B, Farha O K, Scheidt K A and Hupp J T 2012 N-Heterocyclic Carbene-Like Catalysis by a Metal–Organic Framework Material ACS Catal. 21 550Google Scholar
  8. 8.
    Babu C N, Suresh P, Srinivas K, Sathyanarayana A, Sampath N and Prabusankar G 2016 Catalytically Active Lead(II)–Imidazolium Coordination Assemblies with Diversified Lead(II) Coordination Geometries Dalton Trans. 45 8164CrossRefGoogle Scholar
  9. 9.
    Perrin D D and Armarego W L F 1988 Purification of Laboratory Chemicals Third ed. (London: Pergamon Press)Google Scholar
  10. 10.
    (a) Wang X W, Han L, Cai T-J, Zheng Y-Q, Chen J-Z and Deng Q 2007 A Novel Chiral Doubly Folded Interpenetrating 3D Metal −Organic Framework Based on the Flexible Zwitterionic Ligand Cryst. Growth Des. 7 1027; (b) Kühl O and Palm G 2010 Imidazolium Salts from Amino Acids—A New Route to Chiral Zwitterionic Carbene Precursors? Tetrahedron Asymm. 21 393; (c) Babu C N, Sathyanarayana A, Mobin S M, Prabusankar G 2013 Structurally characterized zwitterionic chiral zinc imidazolium [4,4] grid Inorg. Chem. Commun. 37 222Google Scholar
  11. 11.
    Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K and Puschmann H 2009 OLEX2: A complete structure solution, refinement and analysis program J. Appl. Cryst. 42 339CrossRefGoogle Scholar
  12. 12.
    Font M, Acuña-Parés F, Parella T, Serra J, Luis J M, Lloret-Fillol J, Costas M and Ribas X 2014 Direct Observation of Two-Electron Ag(I) /Ag(III) Redox Cycles in Coupling Catalysis Nat. Commun. 5 4373CrossRefGoogle Scholar
  13. 13.
    Bollermann T, Prabusankar G, Gemel C, Winter M, Seidel R W and Fischer R A 2010 First Dinuclear Copper /Gallium Complexes: Supporting Cu0 and CuI Centres by Low-Valent Organogallium Ligands Chem. Eur. J. 16 8846CrossRefGoogle Scholar
  14. 14.
    (a) Sambiagio C, Marsden S P, Blacker A J and McGowan P C 2014 Copper Catalysed Ullmann Type Chemistry: From Mechanistic Aspects to Modern Development Chem. Soc. Rev. 43 3525; (b) Gu Y, Chang D, Leng X, Gu Y and Shen Q 2015 Well-Defined, Shelf-Stable (NHC)Ag(CF2H) Complexes for Difluoromethylation Organometallics 34 3065Google Scholar
  15. 15.
    Hassan J, Sévignon M, Gozzi C, Schulz E and Lemaire M 2002 Aryl −Aryl Bond Formation One Century after the Discovery of the Ullmann Reaction Chem. Rev. 102 1359CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

    • 1
    • 1
    • 1
    • 2
  1. 1.Department of ChemistryIndian Institute of Technology HyderabadTelanganaIndia
  2. 2.School of Chemical and BiotechnologySASTRA UniversityTamil NaduIndia

Personalised recommendations