Skip to main content
Log in

DFT study on the mechanism of InBr3-catalyzed [2+2] cycloaddition of allyltrimethylsilane with alkynones

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Density functional theory calculations at the M06-2X level were done to study the reaction mechanism and regioselectivity for the [2+2] cycloaddition of allyltrimethylsilane with alkynones using InBr3 as the catalyst. The solvent effect was described by the single-point calculations with SMD model in 1,2-dichloroethane. The calculation results prove that the InBr3-catalyzed cycloaddition of allyltrimethylsilane to alkynones takes place through two possible pathways and get selective cyclobutenone products. The reaction involves two main steps: attack of unsaturated carbon atoms of the alkynone by the π electrons of allyltrimethylsilane and a closed-loop process. The process of forming cyclobutenone product of silicon in the 2-position of the ketone group is more favored and the barrier is 15.5 kcal/mol, while the energies for the cyclobutenone of 3-position product are relatively high of 21.2 kcal/mol. In addition, we calculated the catalytic activity of the InX3(X = Cl, Br, I) catalyst for this cycloaddition. This is a good explanation for the experimental data that InBr3 and InI3 would be the most effective catalysts.

M06-2X calculation was done to study the reaction mechanism for the [2+2] cycloaddition of allyltrimethylsilane with alkynones by InBr3 catalyst. The reaction involves attack of the unsaturated carbon atoms of the alkynone by π electrons and a closed-loop process. The cyclobutenone product of silicon in the 2-position of the ketone group is more favored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Anslyn E V and Dougherty D A 2006 In Strain and stability. Modern physical organic chemistry (Sausalito, CA: University Science Books) p. 65

  2. Namyslo J C and Kaufmann D E 2003 The application of cyclobutane derivatives in organic synthesis Chem. Rev. 103 1485

    Article  CAS  Google Scholar 

  3. Snider B B 1976 The stereospecific aluminum chloride catalyzed [2+2] cycloaddition of propiolate esters with unactivated alkenes J. Org. Chem. 41 3061

    Article  CAS  Google Scholar 

  4. Snider B B, Brown L A, Conn R S E and Killinger T A 1977 The lewis acid catalyzed reaction of 3-butyn-2-one with alkenes Tetrahedron Lett. 18 2831

    Article  Google Scholar 

  5. Fienemann H and Hoffmann H M R 1979 Cyclobutenecarboxylic esters via aluminum chloride induced [2+2] cycloadditions of 2-propynoic esters to cyclic olefins J. Org. Chem. 44 2802

    Article  CAS  Google Scholar 

  6. Snider B B, Rodini D J, Conn R S E and Sealfon S 1979 Lewis acid catalyzed reactions of methyl propiolate with unactivated alkenes J. Am. Chem. Soc. 101 5283

    Article  CAS  Google Scholar 

  7. Clark R D and Untch K G 1979 [2+2] Cycloaddition of ethyl propiolate and silyl enol ethers J. Org. Chem. 44 248

    Article  CAS  Google Scholar 

  8. Rosenblum M and Scheck D 1982 Condensation of propiolic esters with olefins catalyzed by the C5 H 5Fe(CO)2 cation Organometallics 1 397

    Article  CAS  Google Scholar 

  9. Faron K L and Wulff W D 1988 The chromium and tungsten pentacarbonyl groups as reactivity auxiliaries in [2+2] cycloadditions J. Am. Chem. Soc. 110 8727

    Article  CAS  Google Scholar 

  10. Ishihara K and Fushimi M 2008 Catalytic enantioselective [2 + 4] and [2+2] cycloaddition reactions with propiolamides J. Am. Chem. Soc. 130 7532

    Article  CAS  Google Scholar 

  11. Lautens M, Klute W and Tam W 1996 Transition mmetal-mediated cycloaddition reactions Chem. Rev. 96 49

    Article  CAS  Google Scholar 

  12. Lopez-Carrillo V and Echavarren A M 2010 Gold(I)-catalyzed intermolecular [2+2] cycloaddition of alkynes with alkenes J. Am. Chem. Soc. 132 9292

    Article  CAS  Google Scholar 

  13. Hilt G, Paul A and Treutwein J 2010 Cobalt catalysis at the crossroads: Cobalt-catalyzed alder-ene reaction versus [2+2] cycloaddition Org. Lett. 12 1536

    Article  CAS  Google Scholar 

  14. Nishimura A, Ohashi M and Ogoshi S 2012 Nickel-catalyzed intermolecular [2+2] cycloaddition of conjugated enynes with alkenes J. Am. Chem. Soc. 134 15692

    Article  CAS  Google Scholar 

  15. Sakai K, Kochi T and Kakiuchi F 2013 Rhodium-catalyzed intermolecular [2+2] cycloaddition of terminal alkynes with electron-deficient alkenes Org. Lett. 15 1024

    Article  CAS  Google Scholar 

  16. Pappas S P, Pappas B C and Portnoy N A 1969 Synthesis and solvolytic rearrangement of 1-methoxybicyclo[4.2.0]octa-3,7-diene-2,5-diones J. Org. Chem. 34 520

    Article  CAS  Google Scholar 

  17. Serve P and Rosenberg H M 1970 New route to the 2-oxabicyclo[3.2.0]hept-6-ene ring system J. Org. Chem. 35 1237

    Article  CAS  Google Scholar 

  18. Bloomfield J J and Owsley D C 1971 Photochemistry of acetylenes. I. Photoaddition of ethylene to dimethyl acetylenedicarboxylate J. Am. Chem. Soc. 93 782

    Article  CAS  Google Scholar 

  19. Koft E R and Smith A B 1984 Intramolecular [2+2] photocyclizations. 2. Total synthesis of (. + -.)-hibiscone C (gmelofuran) J. Am. Chem. Soc. 106 2115

    Article  CAS  Google Scholar 

  20. Hosomi A 1988 Characteristics in the reactions of allylsilanes and their applications to versatile synthetic equivalents Acc. Chem. Res. 21 200

    Article  CAS  Google Scholar 

  21. Miura K and Hosomi A 2006 Allylsilanes, Allenylsilanes, and Propargylsilanes. In Main Group Metals in Organic Synthesis H Yamamoto and K Oshima (Eds.) (Weinheim: Wiley-VCH) p. 489

  22. Hojo M, Tomita K, Hirohara Y and Hosomi A 1993 New access to Di-exo-methylenecyclobutanes via [2+2] cycloaddition of 3-methylthio-4-trimethylsilyl-1, 2-butadiene with alkenes mediated by a Lewis acid Tetrahedron Lett. 34 8123

    Article  CAS  Google Scholar 

  23. Monti H, Audran G, Leandri G and Monti J P 1994 ZnI2 Catalyzed [2+2] versus [3 + 2] cycloaddition of an allyltrimethylsilane with 3-butyn-2-one: Confirmation of a cyclobutene by-product formation Tetrahedron Lett. 35 3073

    Article  CAS  Google Scholar 

  24. Inanaga K, Takasu K and Ihara M 2005 A practical catalytic method for preparing highly substituted cyclobutanes and cyclobutenes J. Am. Chem. Soc. 127 3668

    Article  CAS  Google Scholar 

  25. Takasu K, Hosokawa N, Inanaga K and Ihara M 2006 Cyclobutane ring formation by triflic imide catalyzed [2+2]-cycloaddition of allylsilanes Tetrahedron Lett. 47 6053

    Article  CAS  Google Scholar 

  26. Okamoto K, Tamura E and Ohe K 2014 Stereoselective construction of 1,3-disilylcyclopentane derivatives by scandium-catalyzed [3 + 2] cycloaddition of allylsilanes to β-silylenones Angew. Chem. Int. Ed. 53 10195

    Article  CAS  Google Scholar 

  27. Okamoto K, Tamura E and Ohe K 2013 Acid-catalyzed direct conjugate alkenylation of α, β-unsaturated ketones Angew. Chem. Int. Ed. 52 10639

    Article  CAS  Google Scholar 

  28. Okamoto K, Shimbayashi T, Tamura E and Ohe K 2015 Indium-catalyzed [2+2] cycloaddition of allylsilanes to internal alkynones Org. Lett. 17 5843

    Article  CAS  Google Scholar 

  29. Behzadi M, Saidie K, Islami M R and Khabazzadeh H 2016 Experimental and theoretical investigation of benzyl-N-pyrrolylketene, one-step procedure for preparing of new β-lactams by [2+2] cycloaddition reaction J. Chem. Sci. 128 111

    Article  CAS  Google Scholar 

  30. Benallou A, Abdallaoui H A and Garmes H 2016 A conceptual DFT approach towards analysing feasibility of the intramolecular cycloaddition Diels-Alder reaction of triene amide in Lewis acid catalyst J. Chem. Sci. 128 1489

    Article  CAS  Google Scholar 

  31. Marakchi K, Ghailane R, Kabbaj O K and Komiha N 2014 DFT study of the mechanism and stereoselectivity of the 1,3-dipolar cycloaddition between pyrroline-1-oxide and methyl crotonate J. Chem. Sci. 126 283

    Article  CAS  Google Scholar 

  32. Wang N N, Tan X J, Wang W H and Li P 2016 Theoretical insights into the cycloaddition reaction mechanism between ketenimine and methyleneimine: An alternative approach to the formation of pyrazole and imidazole J. Chem. Sci. 128 279

    Article  CAS  Google Scholar 

  33. Tia R, Adei E, Baidoo J and Edor J 2016 Quantum chemical study of the mechanisms of oxidation of ethylene by Molybdyl and Tungstyl Chloride J. Chem. Sci. 128 707

    Article  CAS  Google Scholar 

  34. Zhao Y and Truhlar D G 2008 The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals Theor. Chem. Acc. 120 215

    Article  CAS  Google Scholar 

  35. Parr R G and Yang W 1989 In Density-functional Theory of Atoms and Molecules (New York: Oxford University Press)

  36. Ajitha M J and Huang K W 2016 Mechanism and regioselectivity of Rh(III)-Catalyzed intermolecular annulation of aryl-substituted diazenecarboxylates and alkenes: DFT insights Organometallics 35 450

    Article  CAS  Google Scholar 

  37. Wei X X, Fang R and Yang L Z 2015 Mechanism of N-heterocylic carbene-catalyzed annulation of allenals with chalcones to 3-pyrancarbaldehydes or cyclopentene Catal. Sci. Technol. 5 3352

    Article  CAS  Google Scholar 

  38. Zhao Y and Truhlar D 2008 Density functionals with broad applicability in chemistry Acc. Chem. Res. 41 157

    Article  CAS  Google Scholar 

  39. Zhao Y and Truhlar D G 2008 Exploring the limit of accuracy of the global hybrid meta density functional for main-group thermochemistry, kinetics, and noncovalent interactions J. Chem. Theory. Comput. 4 1849

    Article  CAS  Google Scholar 

  40. Jacquemin D, Perpète E A, Ciofini I, Adamo C, Valero R, Zhao Y, Truhlar D and 2010 On the performances of the M06 family of density functionals for electronic excitation energies Vol. 6, p. 2071

  41. Dolg M, Wedig U, Stoll H and Preuss H 1987 Energy-adjusted ab initio pseudopotentials for the first row transition elements J. Chem. Phys. 86 866

    Article  CAS  Google Scholar 

  42. Dolg M, Stoll H, Savin A and Preuss H 1989 Energy-adjusted pseudopotentials for the rare earth elements Theor. Chim. Acta 75 173

    Article  CAS  Google Scholar 

  43. Schwerdtfeger P, Dolg M, Schwarz W H E, Bowmaker G A and Boyd P D W 1989 Laser-induced fluorescence spectroscopy of NCS in a free jet expansion J. Chem. Phys. 91 762

    Article  Google Scholar 

  44. Andrae D, Haeussermann U, Dolg M, Stoll H and Preuss H 1990 Energy-adjusted ab initio pseudopotentials for the second and third row transition elements Theor. Chim. Acta 77 123

    Article  CAS  Google Scholar 

  45. Dolg M, Stoll H and Preuss H 1993 A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds Theor. Chim. Acta 85 441

    Article  CAS  Google Scholar 

  46. Hollwarth A, Bohme M, Dapprich S, Ehlers A W, Gobbi A, Jonas V, Kohler K F, Stegmann R, Veldkamp A and Frenking G 1993 A set of d-polarization functions for pseudo-potential basis sets of the main group elements Al Bi and f-type polarization functions for Zn, Cd, Hg Chem. Phys. Lett. 208 237

    Article  Google Scholar 

  47. Ehlers A W, Bohme M, Dapprich S, Gobbi A, Hollwarth A, Jonas V, Kohler K F, Stegmenn R and Frenking G 1993 A set of f-polarization functions for pseudo-potential basis sets of the transition metals Sc Cu, Y Ag and La Au Chem. Phys. Lett. 208 111

    Article  CAS  Google Scholar 

  48. Rassolov V A, Ratner M A, Pople J A, Redfern P C and Curtiss L A 2001 6-31G* basis set for third-row atoms J. Comput. Chem. 22 976

    Article  CAS  Google Scholar 

  49. Fukui K 1970 Formulation of the reaction coordinate J. Phys. Chem. 74 4161

    Article  CAS  Google Scholar 

  50. Fukui K 1981 The path of chemical reactions - the IRC approach Acc. Chem. Res. 14 363

    Article  CAS  Google Scholar 

  51. Marenich A V, Cramer C J and Truhlar D G 2009 Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions J. Phys. Chem. B 113 6378

    Article  CAS  Google Scholar 

  52. Frisch M J et al., 2009 Gaussian 09, revision A.01; Gaussian, Inc.: Pittsburgh, PA.

  53. Chatt J and Duncanson J A 1953 Olefin co-ordination compounds. Part III. Infra-red spectra and structure: Attempted preparation of acetylene complexes J. Chem. Soc. 3 2939

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Longyuan young creative talents to support projects, Gansu Province (2014-98), and the Natural Science Foundation of Department of Education, Gansu Province (2016B-121). We are grateful to the Gansu Province Supercomputer Center for essential support. We are grateful to the Reviewers for their invaluable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XING HUI ZHANG.

Additional information

Supporting Information (SI)

Tables giving Cartesian coordinates for the calculated stationary structures obtained from the DFT calculations are given in Supplementary Information, which is available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 223 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ZHANG, X.H. DFT study on the mechanism of InBr3-catalyzed [2+2] cycloaddition of allyltrimethylsilane with alkynones. J Chem Sci 129, 505–513 (2017). https://doi.org/10.1007/s12039-017-1260-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1260-z

Keywords

Navigation