Skip to main content
Log in

Quantum chemical study of the mechanisms of oxidation of ethylene by Molybdyl and Tungstyl Chloride

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The mechanisms of oxidation of olefins with MoO2Cl2 and WO2Cl2 are studied with DFT. The formation of epoxide from these reactions is not very feasible by any of the postulated paths. If the epoxide precursor will form at all, it will arise via initial [3 + 2]O,Cl addition of ethene to MoO2Cl2 and WO2Cl2 to form an intermediate, followed by re-arrangement to form the precursor, from which the epoxide can be generated by hydrolysis. The chlorohydrin precursor was also found to originate from [3 + 2]O,Cl addition of ethene to MO2Cl2. The results also indicate that a dichloride is not a likely product in the oxidation of ethylene by molybdyl chloride. However, in the case of WO2Cl2, the formation of a dichloride may not be precluded. The formation of acetaldehyde and vinyl alcohol from the oxidation of ethylene does not appear energetically feasible with MoO2Cl2, but appears thermodynamically plausible with WO2Cl2. Thus, the oxidation of ethylene with MoO2Cl2 will most likely lead to the formation of chlorohydrins predominantly via [3 + 2]O,Cl addition; oxidation with WO2Cl2 may also form chlorohydrins, but only extremely slowly. The oxyhalides MO2Cl2 become weaker oxidants in the order CrO2Cl2>>MoO2Cl2 >WO2Cl2. Corresponding to this, reactions involving reduction of the metal [3 + 2] and [2 + 1] show a sharp increase in barrier going from Cr to W; reactions without a change in metal oxidation state ([2 + 2]) show much smaller variations, which are possibly mainly determined by sterics.

The mechanisms of oxidation of olefins with MoO2Cl2 and WO2Cl2 , which have the potential to form epoxide, chlorohydrins and dichlorides are studied with quantum chemical calculations. It is seen that the oxyhalides MO2Cl2 become weaker oxidants in the order CrO2Cl2>>MoO2Cl2>WO2Cl2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. W Mijs and C R Jonge 1986 (Eds.) In Organic synthesis by oxidation with metal compound (New York: Plenum)

  2. Crans D C, Chen H and Felty R A 1992 J. Am. Chem. Soc. 114 4543

    Article  CAS  Google Scholar 

  3. Sharpless K B, Teranishi A Y and Bäckvall J E 1977 J. Am. Chem. Soc. 99 3120

    Article  CAS  Google Scholar 

  4. Schröder M 1980 Chem. Rev. 80 187

    Article  Google Scholar 

  5. Pidun U, Boeheme C and Frenking G 1996 Angew. Chem. Int. Ed. Engl. 35 2817

    Article  CAS  Google Scholar 

  6. Ziegler T, Torrent M, Deng L, Duran M and Sola M 1997 Organometallics 16 13

    Article  Google Scholar 

  7. Tia R and Adei E 2009 Inorg. Chem. 48 11434

    Article  CAS  Google Scholar 

  8. Tia R and Adei E 2011 Comput. Theor. Chem. 977 140

    Article  CAS  Google Scholar 

  9. Aniagyei A, Tia R and Adei E 2013 Dalton Trans. 42 10885

    Article  CAS  Google Scholar 

  10. Aniagyei A, Tia R and Adei E 2013 Dalton Trans. 42 14411

    Article  CAS  Google Scholar 

  11. Aniagyei A, Tia R and Adei E 2013 Comput. Theor. Chem. 1009 70

    Article  CAS  Google Scholar 

  12. Criegee R 1936 Justus Liebigs Ann. Chem. 522 75

    Article  CAS  Google Scholar 

  13. Criegee R, Marchaand B and Wannowius H 1942 Justus Liebigs Ann. Chem. 550 99

    Article  CAS  Google Scholar 

  14. Corey E J, Jardine P D, Virgils S, Yuen P-W and Connell R D 1989 J. Am. Chem. Soc. 111 9243

    Article  CAS  Google Scholar 

  15. Corey E J, Noe M C and Sarshar S 1993 J. Am. Chem. Soc. 115 3828

    Article  CAS  Google Scholar 

  16. K B Wiberg 1965 (Ed.) Oxidation in Organic Chemistry. Part A (New York: Academic Press) pp. 1–68

  17. Wallis J M and Kochi J K 1988 J. Am. Chem. Soc. 110 8207

    Article  CAS  Google Scholar 

  18. Gable K P and Phan T N 1994 J. Am. Chem. Soc. 116 833

    Article  CAS  Google Scholar 

  19. Rappé A K and Goddard W A I. 1982 J. Am. Chem. Soc. 104 3287

    Article  Google Scholar 

  20. Dapprich S, Ujaque G, Maseras F, Lledós A, Musaev D G and Morokuma K 1996 J. Am. Chem. Soc. 118 11660

    Article  CAS  Google Scholar 

  21. Wu Y-D, Wang Y and Houk K N 1992 J. Org. Chem. 57 1362

    Article  CAS  Google Scholar 

  22. Torrent M, Deng L and Ziegler T 1998 Inorg. Chem. 37 1307

    Article  CAS  Google Scholar 

  23. Torrent M, Deng L, Duran M, Solá M and Ziegler T 1999 Can. J. Chem. 77 1476

    Article  CAS  Google Scholar 

  24. Strassner T and Drees M 2004 J. Mol. Struct: THEOCHEM 671 (1–3) 197

    Article  CAS  Google Scholar 

  25. Spartan, Wavefunction, Inc., 18401 Von Karman Ave., #370, Irvine, CA, 92715, USA

  26. Becke A D 1988 Phys. Rev. A 38 3098

    Article  CAS  Google Scholar 

  27. Becke A D 1996 J. Chem. Phys. 104 1040

    Article  CAS  Google Scholar 

  28. Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785

    Article  CAS  Google Scholar 

  29. Vosko S H, Wilk L and Nusair M 1980 Can. J. Phys. 58 1200

    Article  CAS  Google Scholar 

  30. Zhao Y and Truhlar D G 2008 Theor. Chem. Account 120 215

    Article  CAS  Google Scholar 

  31. Peverati R and Truhlar D G Phil. Trans. R. Soc. A 372 20120476

  32. Dunning T H Jr, Hay P J 1976 In Modern Theoretical Chemistry 3 H F Schaefer III (Ed.) (New York: Plenum)

  33. Hay P J and Wadt W R 1985 J. Chem. Phys. 82 270

    Article  CAS  Google Scholar 

  34. Wadt W R and Hay P J 1985 J. Chem. Phys. 82 284

    Article  CAS  Google Scholar 

  35. Hay P J and Wadt W R 1985 J. Chem. Phys. 82 299

    Article  CAS  Google Scholar 

  36. Roy L E, Hay P J and Martin R L 2008 J. Chem. Theory Comput. 4 1029

    Article  CAS  Google Scholar 

  37. Limberg C and Köppe R 1999 Inorg. Chem. 38 2106

    Article  CAS  Google Scholar 

  38. Limberg C, Köppe R and Schnöckel H 1998 Angew. Chem. Int. Ed. 37 496

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the National Council for Tertiary Education, Republic of Ghana, for a research grant under the Teaching and Learning Innovation Fund (TALIF/KNUST/3/008/2005). RT and EA conceived the idea and designed the study. RT, EA, JB and JE ran calculations and analyzed data. RT and EA wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RICHARD TIA.

Additional information

Supplementary Information

Energy profiles and optimized geometrical parameters of all the stationary points involved in the reactions reported. Figures S1–S16 are available as Supplementary Information at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 1.06 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

TIA, R., ADEI, E., BAIDOO, J. et al. Quantum chemical study of the mechanisms of oxidation of ethylene by Molybdyl and Tungstyl Chloride. J Chem Sci 128, 707–718 (2016). https://doi.org/10.1007/s12039-016-1065-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1065-5

Keywords

Navigation