Skip to main content
Log in

Theoretical insights into the cycloaddition reaction mechanism between ketenimine and methyleneimine: An alternative approach to the formation of pyrazole and imidazole

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The cycloaddition reaction mechanism between interstellar molecules, ketenimine and methyleneimine, has been systematically investigated employing the second-order Møller-Plesset perturbation theory (MP2) method in order to better understand the reactivity of nitrogenous cumulene ketenimine with the C =N double bond compound methyleneimine. Geometry optimizations and vibrational analyses have been performed for the stationary points on the potential energy surfaces of the system. Calculations show that five-membered cyclic carbene intermediates could be produced through pericyclic reaction processes between ketenimine and methyleneimine. Through the subsequent hydrogen transfer processes, carbene intermediates can be isomerized to the pyrazole and imidazole compounds, respectively. The present study is helpful to understand the formation of prebiotic species in interstellar space.

The cycloaddition reaction mechanism between interstellar molecules, ketenimine and methyleneimine, has been systematically investigated theoretically. The products of this reaction are pyrazole and imidazole compounds, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Cláudio M N, Igor R, Teresa M D, Pinhoe M, Rui F, Tomáš Š and Thomas B 2011 J. Am. Chem. Soc. 50 18911

    Google Scholar 

  2. Lovas F J, Hollis J M, Remijan A J and Jewell P R 2006 Astrophys. J. 2 L137

    Article  Google Scholar 

  3. Jacox M E and Milligan D E 1963 J. Am. Chem. Soc. 3 278

    Article  Google Scholar 

  4. Jacox M E 1979 Chem. Phys. 2 157

    Article  Google Scholar 

  5. Rodler M, Brown R D, Godfrey P D and Tack L M 1984 Chem. Phys. Lett. 5 447

    Article  Google Scholar 

  6. Nadia B, Dimitrios S, Francesca L, Raffaele P, Mathias H, Wolf D G and Piergiorgio C 2012 J. Phys. Chem. A 43 10467

    Google Scholar 

  7. Hudson R L and Moore M H 2004 Icarus 172 466

    Article  CAS  Google Scholar 

  8. Lamsabhi A M, Otilia M, Manuel Y, Salpin J Y, Haldys V, Tortajada J and Guillemin J C 2008 J. Phys. Chem. A 42 10509

    Article  Google Scholar 

  9. Guennoun Z, Couturier-Tamburelli I, Combes S, Aycard J P and Piétri N 2005 J. Phys. Chem. A 51 11733

    Article  Google Scholar 

  10. Liu S, Lei Y, Qi X T and Lan Y 2014 J. Phys. Chem. A 14 2638

    Article  Google Scholar 

  11. Fang D C and Li H M 2000 J. Mol. Struc. (Theochem) 528 111

    Article  CAS  Google Scholar 

  12. Sun X M, Wei X G, Wu X P, Ren Y, Wong N B and Li W K 2010 J. Phys. Chem. A 1 595

    Article  Google Scholar 

  13. Sung K, Wu S H, Wu R R and Sun S Y 2002 J. Org. Chem. 12 4298

    Article  Google Scholar 

  14. Wu F and He S R 2000 Acta Phys-Chim. Sin. 16 243

    Google Scholar 

  15. Hollis J M, Remijan A J, Jewell P R and Lovas F J 2006 Astrophys. J. 2 933

    Article  Google Scholar 

  16. Ikeda M, Ohishi M, Nummelin A, Dickens J E, Bergman P, Hjalmarson Å and Irvine W M 2001 Astrophys. J. 2 792

    Article  Google Scholar 

  17. Bottinelli S, Ceccarelli C, Williams J P and Lefloch B 2007 Astron. Astrophys. 2 601

    Article  Google Scholar 

  18. Scott A S, Jérôme A, Conel M, Tohru A, Saša B, Giuseppe A B, Janet B, John P B, Donald E B, John R B, Mark J B, Henner B, Anna B, Simon J C, George C, Luigi C, George C, Louis D, Zahia D, Jason P D, Gianluca F, Holger F, George J F, Ian A F, Marc F., Mary K G, Daniel P G, Matthieu G, Faustine G, Chris J, Lindsay P K, Kilcoyne A L, Jan L, Matrajt G, Meibom A, Mennella V, Mostefaoui S, Nittler L R, Palumbo M E, Papanastassiou D A, Robert F, Rotundi A, Snead C J, Spencer M K, Stadermann F J, Steele A, Stephan T, Tsou P, Tyliszczak T, Westphal A J, Wirick S, Wopenka B, Yabuta H, Zare R N and Zolensky M E 2006 Science 314 1720

    Article  Google Scholar 

  19. Pizzarello S, Huang Y, Becker L, Poreda R J, Nieman R A, Cooper G and Williams M 2001 Science 293 2236

    Article  CAS  Google Scholar 

  20. Remijan A J, Hollis J M, Lovas F J, Plusquellic D F and Jewell P R 2005 Astrophys. J. 632 333

    Article  CAS  Google Scholar 

  21. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery J A, Stratmann R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Gonzalez C, Challacombe M, Gill P M, Johnson B G, Chen W, Wong M W, Andres J L, Head-Gordon M, Replogle E S and Pople J A 1998 Gaussian 98, Revision A.9 (Gaussian Inc., Pittsburgh, PA)

  22. Lattelais M, Pauzat F, Ellinger Y and Ceccarelli C 2009 Astrophys. J. 696 L133

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC (21003082, 21303093, 21577076, 21403088), the NSF of Shandong Province (ZR2014BM020), and the project of Shandong Province Higher Educational Science and Technology Program (J13LM06). The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (KF2013-05) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XIAOJUN TAN or PING LI.

Additional information

Supporting Information (SI)

Atomic coordinates and other data for the molecules are available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 59.0 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

WANG, N., TAN, X., WANG, W. et al. Theoretical insights into the cycloaddition reaction mechanism between ketenimine and methyleneimine: An alternative approach to the formation of pyrazole and imidazole. J Chem Sci 128, 279–285 (2016). https://doi.org/10.1007/s12039-015-1028-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-1028-2

Keywords

Navigation