Skip to main content
Log in

Cerium(IV) carboxymethylcellulose (CMC −CeIV) as an efficient and reusable catalyst for the one-pot pseudo-four component synthesis of 2,4,6-triphenylpyridines

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Cerium(IV) carboxymethylcellulose (CMC −CeIV) was found to be a highly efficient, eco-friendly and recyclable heterogeneous catalyst for the synthesis of 2,4,6-triarylpyridine derivatives in excellent yields via one-pot multicomponent reaction of various benzaldehydes, acetophenones, and ammonium acetate under solvent-free condition. Moreover, the present protocol has the merits of easy work-up, short reaction times, and high yields.

CMC−CeIV was synthesized via a simple ion exchange reaction of sodium carboxymethylcellulose (CMC−Na) and ceric ammonium nitrate. The as-prepared CMC−CeIV can efficiently catalyze the one-step pseudo-four-component condensation of various benzaldehydes, acetophenones and ammonium acetate for the synthesis of 2,4,6-triarylpyridine derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Scheme 2
Figure 2
Figure 3
Figure 4
Figure 5
Scheme 3

Similar content being viewed by others

References

  1. McAteer C H, Balasubramanian M and Murugan R 2008 In Comprehensive heterocyclic chemistry III; A R Katritzky, C A Ramsden, E F V Scriven and R J K Taylor (Eds.) (Oxford: Elsevier) Vol. 7, p. 310 and references cited therein

  2. Balasubramanian M and Keay J G 1996 In Comprehensive heterocyclic chemistry II; A R Katritzky, C W Rees and E V F Scriven (Eds.) (London: Pergamon Press) Vol. 5, p. 246 and references cited therein

  3. Enyedy I J, Sakamuri S, Zaman W A, Johnson K M and Wang S 2003 Pharmacophore-Based discovery of substituted pyridines as novel dopamine transporter inhibitors Bioorg. Med. Chem. Lett. 13 513

    Article  CAS  Google Scholar 

  4. Pillai A D, Rathod P D, Franklin P, Patel M, Nivsarkar M, Vasu K K, Padh H and Sudarsanam V 2003 Novel drug designing approach for dual inhibitors as anti-inflammatory agents: Implication of pyridine template Biochem. Biophys. Res. Commun. 301 183

    Article  CAS  Google Scholar 

  5. Klimešová V, Svoboda M, Waisser M, Pour M and Kaustová J 1999 New pyridine derivatives as potential antimicrobial agents IL Farmaco 54 666

    Article  Google Scholar 

  6. Karki R, Thapa P, Kang M J, Jeong T C, Nam J M, Kim H -L, Na Y, Cho W -J, Kwon Y and Lee E -S 2010 Synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure-activity relationship study of hydroxylated 2,4-diphenyl-6-aryl pyridines Bioorg. Med. Chem. 18 3066

    Article  CAS  Google Scholar 

  7. Kröhnke F 1976 The specific synthesis of pyridines and oligopyridines Synthesis 1 1

    Article  Google Scholar 

  8. Fang A G, Mello J V and Finney N S 2004 Structural studies of biarylpyridines fluorophores lead to the identification of promising long wavelength emitters for use in fluorescent chemosensors Tetrahedron 60 11075

    Article  CAS  Google Scholar 

  9. Chelucci G and Thummel R P 2002 Chiral 2,2-Bipyridines, 1,10-Phenanthrolines, and 2,2:6,2-Terpyridines: Syntheses and applications in asymmetric homogeneous catalysis Chem. Rev. 102 3129

    Article  CAS  Google Scholar 

  10. Islam A, Sugihara H and Arakawa H 2003 Molecular design of ruthenium(II) polypyridyl photosensitizers for efficient nanocrystalline TiO2 solar cells J. Photochem. Photobiol. A 158 131

    Article  CAS  Google Scholar 

  11. Constable E C, Housecroft C E, Neuburger M, Phillips D, Raithby P R, Schofield E, Sparr E, Tocher D A, Zehnder A M and Zimmermann Y 2000 Development of supramolecular structure through alkylation of pendant pyridyl functionality J. Chem Soc., Dalton Trans. 2219

  12. Tu S Li T, Shi F, Fang F, Zhu S, Wei X and Zong Z 2005 An efficient improve for the Kröhnke reaction: One-pot synthesis of 2,4,6-triarylpyridines using raw materials under microwave irradiation Chem. Lett. 34 732

    Article  Google Scholar 

  13. Heravi M M, Bakhtiari K, Daroogheha Z and Bamoharram F F 2007 An efficient synthesis of 2,4,6-triarylpyridines catalyzed by heteropolyacid under solvent-free conditions Catal. Commun. 8 1991

    Article  CAS  Google Scholar 

  14. Nagarapu L, Peddiraju R and Apuri S 2007 HClO4-SiO2 as a novel and recyclable catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions Catal. Commun. 8 1973

    Article  CAS  Google Scholar 

  15. Ren Y -M and Cai C 2009 Three-components condensation catalyzed by molecular iodine for the synthesis of 2,4,6-triarylpyridines and 5-unsubstituted-3,4-dihydropyrimidin-2(1 H)-ones under solvent-free conditions Monatsh. Chem. 140 49

    Article  CAS  Google Scholar 

  16. Shinde P V, Labade V, Gujar J B, Shingate B B, Shingare M S and 2012 Bismuth triflate catalyzed solvent-free synthesis of 2,4,6-triaryl pyridines and an unexpected selective acetalization of tetrazolo[1,5-a]-quinoline-4-carbaldehydes Tetrahedron Lett. 53 1523

  17. Safari J, Zarnegar Z and Borujeni M B 2013 Mesoporous nanocrystalline MgAl2 O 4: A new heterogeneous catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions Chem. Pap. 67 688

    Article  CAS  Google Scholar 

  18. Safari J, Gandomi-Ravandi S and Borujeni M B 2013 Green and solvent-free procedure for microwave-assisted synthesis of 2,4,6-triarylpyridines catalysed using MgAl2 O 4 nanocrystals J. Chem. Sci. 125 1063

    Article  CAS  Google Scholar 

  19. Davoodnia A, Bakavoli M, Moloudi R, Tavakoli-Hoseini and Khashi N M 2010 Highly efficient, one-pot, solvent-free synthesis of 2,4,6-triarylpyridines using a Brønsted-acidic ionic liquid as reusable catalyst Monatsh. Chem. 141 867

    Article  CAS  Google Scholar 

  20. Moosavi-Zare A R, Zolfigol M A, Farahmand S, Zare A, Pourali A A and Ayazi-Nasrabadi R 2014 Synthesis of 2,4,6-triarylpyridines using ZrOCl2 under solvent-free conditions Synlett 25 193

    Article  CAS  Google Scholar 

  21. Zolfigol M A, Safaiee M, Afsharnadery F, Bahrami-Nejad N, Baghery S, Salehzadeh S and Maleki F 2015 Silica vanadic acid [SiO2-VO(OH)2] as an efficient heterogeneous catalyst for the synthesis of 1,2-dihydro-1-aryl-3H-naphth[1,2-e][1,3]oxazin-3-one and 2,4,6-triarylpyridine derivatives via anomeric based oxidation RSC Adv. 5 100546

  22. Alinezhad H, Tajbakhsh M and Ghobadi N 2015 The synthesis of polysubstituted pyridines using nano Fe3 O 4 supported hydrogensulfate ionic liquid Res. Chem. Intermed. 41 9113

    Article  CAS  Google Scholar 

  23. Montazeri N and Mahjoob S 2012 Highly efficient and easy synthesis of 2,4,6-triarylpyridines catalyzed by pentafluorophenylammonium triflate (PFPAT) as a new recyclable solid acid catalyst in solvent-free conditions Chin. Chem. Lett. 23 419

    Article  CAS  Google Scholar 

  24. Penta S and Vedula R R 2013 Synthesis of 2,4,6-tri-sutitd pyridine derivatives in aqueous medium via Hantzsch multi-component reaction catalyzed by cerium (IV) ammonium nitrate J. Heterocycl. Chem. 50 859

    Article  CAS  Google Scholar 

  25. Xiao J L, Lu Z X and Li Y Q 2015 Carboxymethylcellulose-supported palladium nanoparticles generated in situ from palladium(II) carboxymethylcellulose: An efficient and reusable catalyst for Suzuki-Miyaura and Mizoroki-Heck reactions Ind. Eng. Chem. Res. 54 790

    Article  CAS  Google Scholar 

  26. Xiao J L, Lu Z X and Li Y Q 2015 Carboxymethylcellulose-supported palladium nanoparticles generated in situ from palladium(II) carboxymethylcellulose as an efficient and reusable catalyst for ligand- and base-free Heck-Matsuda and Suzuki-Miyaura couplings Appl. Organometal. Chem. 29 646

    Article  CAS  Google Scholar 

  27. He F, Zhao D Y, Liu J C and Roberts C B 2007 Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater Ind. Eng. Chem. Res. 46 29

    Article  CAS  Google Scholar 

  28. Cheng J, He F, Durham E, Zhao D Y and Roberts C B 2008 Polysugar-stabilized Pd nanoparticles exhibiting high catalytic activities for hydrodechlorination of environmentally deleterious trichloroethylene Langmuir 24 328

    Article  Google Scholar 

  29. Katritzky A R, Adamson J, Elisseou E M, Musumarra G, Patel R C, Sakizadeh K and Yeung W K 1982 Kinetics and mechanisms of nucleophilic displacements with heterocycles as leaving groups. Part 4. 2,4,6-Triaryl-N-benzylpyridinium cations: Rate variation with electronic effects in the leaving group J. Chem. Soc., Perkin Trans. 2 1041

    Article  Google Scholar 

  30. Wang M, Yang Z, Song Z Y and Wang Q L 2015 Three-component one-pot synthesis of 2,4,6-triarylpyridines without catalyst and solvent J. Heterocycl. Chem. 52 907

    Article  CAS  Google Scholar 

  31. Satasia S P, Kalaria P N and Raval D K 2013 Acidic ionic liquid immobilized on cellulose: An efficient and recyclable heterogeneous catalyst for the solvent-free synthesis of hydroxylated trisubstituted pyridines RSC Adv. 3 3184

    Article  CAS  Google Scholar 

  32. Maleki B, Azarifar D, Veisi H, Hojati S F, Salehabadi H and Yami R N 2010 Wet 2,4,6-trichloro-1,3,5-triazine (TCT) as an efficient catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions Chin. Chem. Lett. 21 1346

    Article  CAS  Google Scholar 

  33. Tabrizian E, Amoozadeh A, Rahmani S, Imanifar E, Azhari S and Malmir S 2015 One-pot, solvent-free and efficient synthesis of 2,4,6-triarylpyridines catalyzed by nano-titania-supported sulfonic acid as a novel heterogeneous nanocatalyst Chin. Chem Lett. 26 1278

    Article  CAS  Google Scholar 

  34. Davoodnia A, Razavi B and Tavakoli-Hoseini N 2012 An efficient and green procedure for the synthesis of 2,4,6-triarylpyridines using PPA-SiO2 as a reusable heterogeneous catalyst under solvent-free conditions E-J. Chem. 9 2037

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Natural Science Foundation of China [grant nos. 21372099 and 21072077] and the Natural Science Foundation of Guangdong Province [grant nos.10151063201000051 and 8151063201000016] for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YIQUN LI.

Additional information

Supplementary Information (SI)

All additional information pertaining to characterization of known compounds using1H NMR spectra, and characterization of the new compounds using1H NMR,13C MNR spectra and HRMS (Figures S1 to S9) are given in the supporting information, available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 5.09 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

CHEN, Y., ZHANG, T., WANG, D. et al. Cerium(IV) carboxymethylcellulose (CMC −CeIV) as an efficient and reusable catalyst for the one-pot pseudo-four component synthesis of 2,4,6-triphenylpyridines. J Chem Sci 129, 421–430 (2017). https://doi.org/10.1007/s12039-017-1247-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1247-9

Keywords

Navigation