Skip to main content
Log in

Green and solvent-free procedure for microwave-assisted synthesis of 2,4,6-triarylpyridines catalysed using MgAl2O4 nanocrystals

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Design and development of a heterogeneous nanocatalyst for condensation reaction of acetophenone derivatives, aromatic aldehydes, and ammonium acetate to yield 2,4,6-triarylpyridines followed by microwave irradiation is described. Nanocrystalline MgAl2O4 as a novel heterogeneous recyclable catalyst shows high activity for the above reaction. In addition, the easily recoverable nanosized catalysts showed good reusability.

The design of a heterogeneous nanocatalyst for condensation reaction of acetophenone derivatives, aromatic aldehydes, and ammonium acetate to yield 2,4,6-triarylpyridines followed by microwave irradiation is described here. Nanocrystalline MgAl2O4 as a novel heterogeneous, recyclable catalyst shows high activity for the above reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. De La Hoz A, Diaz-Ortiz A and Moreno A 2004 Curr. Org. Chem. 8 903

    Article  Google Scholar 

  2. Clark D E, Folz D C and West J K 2000 Microstruct. Proc. 287 153

    Article  Google Scholar 

  3. Bougrin K, Loupy A and Soufiaoui M 2005 J. Photochem. Photobiol. C6 139

    Article  CAS  Google Scholar 

  4. Ju Y H and Varma R S 2005 Org. Lett. 7 2409

    Article  CAS  Google Scholar 

  5. Kabalka G W, Wang L, Namboodiri V and Pagni R M 2000 Tetrahedron Lett. 41 5151

    Article  CAS  Google Scholar 

  6. Kim B Y, Ahn J B, Lee H W, Kang S K, Lee J H, Shin J S, Ahn S K, Hong C I and Yoon S S 2004 Eur. J. Med. Chem. 39 433

    Article  CAS  Google Scholar 

  7. Enyedy I J, Sakamuri S, Zaman W A, Johnson K M and Wang S 2003 Bioorg. Med. Chem. Lett. 13(3) 513

    Article  CAS  Google Scholar 

  8. Pillai A D, Rathod P D, Franklin P X, Patel M, Nivsarkar M, Vasu K K, Padh H and Sudarsanam V 2003 Biochem. Biophys. Res. Commun. 301(1) 183

    Article  CAS  Google Scholar 

  9. Klimešová V, Svoboda M, Waisser K, Pour M and Kaustová J 1999 Il Farmaco 54(10) 666

    Article  Google Scholar 

  10. Constable E C, Housecroft C E, Neuburger M, Phillips D, Raithby P R, Schofield E, Sparr E, Tocher D A, Zehnder M and Zimmermann Y 2000 J. Chem. Soc. Dalton Trans. (13) 2219

  11. (a) Krohnke F and Zecher W 1962 Angew. Chem. Int. Ed. 1(12) 626; (b) Krohnke F 1976 Synthesis 1 626

  12. Zhao L X, Moon Y S, Basnet A, Kim E, Jahng Y, Park J G, Jeong T C, Cho W J, Choi S U, Lee C O, Lee S Y, Lee C S and Lee E S 2004 Bioorg. Med. Chem. Lett. 14 1333

    Article  CAS  Google Scholar 

  13. Chubb F, Hay A S and Sandin R B 1953 J. Am. Chem. Soc. 75(23) 6042

    Article  CAS  Google Scholar 

  14. Dilthey W 1921 J. Prakt. Chem. 102(8–10) 209

    Article  CAS  Google Scholar 

  15. Lombard R and Stephen J P 1958 Bull. Soc. Chim. Fr. 1458

  16. Zecher W and Krohnke F 1961 Chem. Ber. 94(3) 690

    Article  CAS  Google Scholar 

  17. Frank R L and Seven R P 1949 J. Am. Chem. Soc. 71(8) 2629

    Article  CAS  Google Scholar 

  18. (a) Potts K T, Cipullo M J, Ralli P and Theodoridis G 1981 J. Am. Chem. Soc. 103(12) 3584; (b) Potts K T, Cipullo M J, Ralli P and Theodoridis G 1981 J. Am. Chem. Soc. 103(12) 3585

  19. Kobayashi T, Kakiuchi H and Kato H 1991 Bull. Chem. Soc. Jpn. 64(2) 392

    Article  CAS  Google Scholar 

  20. Adib M, Tahermansouri H, Koloogani S A, Mohammadi B and Bi-janzadeh H R 2006 Tetrahedron Lett. 47 5957

    Article  CAS  Google Scholar 

  21. Palacios F, de Retana A M O and Oyarzabal J 1996 Tetrahedron Lett. 37(26) 4577

    Article  CAS  Google Scholar 

  22. Verma A K, Koul S, Pannu A P S and Razdan T K 2007 Tetrahedron 63 8715

    Article  CAS  Google Scholar 

  23. Kumar A, Koul S, Razdan T K and Kapoor K K 2006 Tetrahedron Lett. 47 837

    Article  CAS  Google Scholar 

  24. Borthakur M, Dutta M, Gogoi S and Boruah R C 2008 Synlett (20) 3125

  25. Cave G W V and Raston C L 2001 J. Chem. Soc., Perkin Trans. 1 3258

    Google Scholar 

  26. Zomordbakhsh S, Anaraki-Ardakani H, Zeeb M, Sadeghi M and Mazraeh-Seffid M 2012 J. Chem. Res. 36(3) 138

    Article  CAS  Google Scholar 

  27. Cave G W V and Raston C L 2000 Chem. Commun. 2199

  28. (a) Smith C B, Raston C L and Sobolev A N 2005 Green Chem. 7(9) 650; (b) Smith N M, Raston C L, Smith C B and Sobolev A N 2007 Green Chem. 9(11) 1185

  29. Heravi M M, Bakhtiari Kh, Daroogheha Z and Bamoharram F F 2007 Catal. Commun. 8(12) 1991

    Article  Google Scholar 

  30. Davoodnia A, Bakavoli M, Moloudi R, Tavakoli-Hoseini N and Khashi M 2010 Monatsh Chem. 141(8) 867

    Article  CAS  Google Scholar 

  31. Nagarapu L, Peddiraju A R and Apuri S 2007 Catal. Commun. 8(12) 1973

    Article  CAS  Google Scholar 

  32. Maleki B, Azarifar D, Veisi H, Hojati S F, Salehabadi H and Yami R N 2010 Chin. Chem. Lett. 21(11) 1346

    Article  CAS  Google Scholar 

  33. Ren Y M and Cai C 2009 Monatsh. Chem. 140(1) 49

    Article  CAS  Google Scholar 

  34. Montazeri N and Mahjoob S 2012 Chin. Chem. Lett. 23 419

    Article  CAS  Google Scholar 

  35. Shinde P V, Labade V B, Gujar J B, Shingate B B and Shingare M S 2012 Tetrahedron Lett. 53 1523

    Article  CAS  Google Scholar 

  36. Montazeri N, Ayoubi S F, Pourshamsian K and Bashtini F 2012 Oriental J. Chem. 28(1) 303

    Article  CAS  Google Scholar 

  37. Reddy K S, Reddy R B, Mukkanti K, Thota G and Srinivasulu G 2011 Rasayan J. Chem. 4(2) 299

    CAS  Google Scholar 

  38. Davoodnia A, Razavi B and Tavakoli-Hoseini N 2012 E-J. Chem. 9(4) 2037

    Article  CAS  Google Scholar 

  39. Maleki B, Salehabadi H, Sepehr Z and Kermanian M 2011 Collect. Czech. Chem. Commun. 76 1307

    Article  CAS  Google Scholar 

  40. Mohammad Shafiee M R, Moloudi R and Ghashang M 2012 APCBEE Proc. 1 221

    Article  Google Scholar 

  41. Mohammad Shafiee M R and Moloudi R 2011 J. Chem. Res. 35(5) 294

    Article  Google Scholar 

  42. Banerjee S and Sereda G 2009 Tetrahedron Lett. 50 6959

    Article  CAS  Google Scholar 

  43. Navaei Alvar E, Rezaei M, Navaei Alvar H, Feyzallahzadeh H and Yan Z F 2009 Chem. Eng. Commun. 196(11) 1417

    Article  CAS  Google Scholar 

  44. Baudin C, Martinaz R and Pena P 1995 J. Am. Ceram. Soc. 78(7) 1857

    Article  CAS  Google Scholar 

  45. Ganesh I, Bhattacharjee S, Saha B, Johnson R, Rajeshwari K, Sengupta R, Ramana Rao M and Mahajan Y 2002 Ceram. Int. 28(3) 245

    Article  CAS  Google Scholar 

  46. Fairhurst C W 1992 Adv. Dent. Res. 6 78

    CAS  Google Scholar 

  47. Thomé L, Gentils A, Jagielski J, Garrido F and Thomé T 2007 Vacuum 81(10) s

    Article  Google Scholar 

  48. Koroleva L 2004 Glass. Ceram. 61(9) 299

    Article  CAS  Google Scholar 

  49. Huang X Q, Li H X, Wang J X and Jia X F 2005 Chin. Chem. Lett. 16(5) 607

    CAS  Google Scholar 

  50. Chiu C, Tang Z and Ellingboe J W 1999 J. Comb. Chem. 1(1) 73

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support from the Research Council of the University of Kashan (Grant No. 256722/17), Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JAVAD SAFARI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

SAFARI, J., GANDOMI-RAVANDI, S. & BORUJENI, M.B. Green and solvent-free procedure for microwave-assisted synthesis of 2,4,6-triarylpyridines catalysed using MgAl2O4 nanocrystals. J Chem Sci 125, 1063–1070 (2013). https://doi.org/10.1007/s12039-013-0477-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-013-0477-8

Keywords

Navigation