Skip to main content
Log in

Nano MgBi2O4: A Novel Green Catalyst for the One-step Cascade Condensation of Arylamines, Acetone and Isatins in Water

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Nano-size MgBi2O4 has been synthesized for the first time via a simple co-precipitation method using the surfactant N-cetyl- N,N,N-trimethylammonium bromide (CTAB). Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray powder diffraction (XRD) techniques were employed to characterize the nano-catalyst. Additionally, the reactivity of the prepared nanoparticles was investigated in the synthesis of 1\(^{\prime }\)-aryl-2\(^{\prime }\)-(2-oxoindolin-3-yl)spiro[indoline-3,5\(^{\prime }\)-pyrroline]-2,3\(^{\prime }\)-diones in a one-pot, one-step and pseudo four-component condensation of arylamine, acetone, and isatins at 50°C in water. Five new compounds were synthesized and identified. This procedure has various advantages such as, short reaction times, mild eco-friendly conditions and excellent yields to prepare a novel class of heteroaromatic compounds. MgBi2O4 possess superior qualities such as easy and economic preparation procedure and handling, stability, and non-toxicity. Its reusability has also been examined upto 4 runs without activity loss.

Nano MgBi2O4 was synthesized for the first time via a simple co-precipitation method using the surfactant N-cetyl-N,N,N-trimethylammonium bromide (CTAB). The reactivity of the nanoparticles was investigated in the synthesis of 1 ′-aryl-2 ′-(2-oxoindolin-3-yl)spiro[indoline-3,5 ′-pyrroline]-2,3 ′-diones by the one-step, pseudo four-component condensation of arylamines, acetone and isatins at 50°C in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Noguera C 1996 In Physics and Chemistry at Oxide Surfaces (Cambridge, UK: Cambridge University Press)

    Book  Google Scholar 

  2. Kung H H 1989 In Transition Metal Oxides, Surface Chemistry and Catalysis (Amsterdam: Elsevier)

    Google Scholar 

  3. Henrich V E and Cox P A 1994 In The Surface Chemistry of Metal Oxides (Cambridge, UK: Cambridge University Press)

    Google Scholar 

  4. Fernández-García M, Martínez-Arias A, Hanson J C and Rodríguez J A 2004 Chem. Rev. 104 4063

    Article  Google Scholar 

  5. Gleiter H 1995 Nanostruct. Mater. 6 3

    Article  CAS  Google Scholar 

  6. Rodriguez J A, Liu G, Jirsak T, Hrbek J, Chang Z, Dvorak J and Maiti A 2002 J. Am. Chem. Soc. 124 5242

    Article  CAS  Google Scholar 

  7. Trudeau M L and Ying J Y 1996 Nanostruct. Mater. 7 245

    Article  CAS  Google Scholar 

  8. Busca G 2006 In The surface acidity and basicity of solid oxides and zeolites in Metal Oxides L G Fierro (Ed.) (Boca Ratón: CRC)

    Google Scholar 

  9. Rodríguez J A and Fernández-García M 2007 In Synthesis, Properties and Applications of Oxide Nanoparticles (New Jersey: Wiley)

    Book  Google Scholar 

  10. Chen J F, Wang Y H, Gou F, Wang X M and Zheng C 2002 Ind. Eng. Chem. Res. 39 948

    Article  Google Scholar 

  11. Wu M C., Hsiao K C. and Lu H C. 2015 Mater. Chem. Phys. 162 386

    Article  CAS  Google Scholar 

  12. Kong L B, Lu C., Liu M C., Luo Y C., Kang L, Li X and Walsh F C 2014 Electrochim. Acta 115 22

    Article  CAS  Google Scholar 

  13. Montes V, Checa M, Marinas A, Boutonnet M, Marinas J M, Urbano F J, Järas S and Pine C 2014 Catal. Today 223 129

    Article  CAS  Google Scholar 

  14. Ye L, Fu J, Xu Z., Yuan R and Li Z. 2014 ACS Appl. Mater. Interfaces 6 3483

    Article  CAS  Google Scholar 

  15. D’Souza L and Richards R 2007 In Synthesis of Metal-Oxide Nanoparticles: Liquid-Solid Transformations, in Synthesis, Properties and Applications of Oxide Nanoparticles J A Rodríguez and M Fernández-García (Eds.) (New Jersey: Wiley) Ch. 3

  16. Bhaskar G, Arun Y, Balachandran C., Saikumar C. and Perumal P T 2012 Eur. J. Med. Chem. 51 79

    Article  CAS  Google Scholar 

  17. Sebahar P R and Williams R M 2000 J. Am. Chem. Soc. 122 5666

    Article  CAS  Google Scholar 

  18. Noroozi Tisseh Z, Ahmadi F, Dabiri M, Khavasi H R and Bazgir A 2012 Tetrahedron Lett 53 3603

    Article  Google Scholar 

  19. Liju W, Ablajan K and Jun F 2015 Ultrason. Sonochem. 22 113

    Article  Google Scholar 

  20. Badillo J J, Arevalo G E, Fettinger J C and Franz A K 2011 Org. Lett. 13 418

    Article  CAS  Google Scholar 

  21. Kumar R R, Perumal S, Senthilkumar P, Yogeeswari P and Sriram D 2009 Eur. J. Med. Chem. 44 3821

    Article  Google Scholar 

  22. Shanmugam P, Viswambharan B, Selvakumar K and Madhavan S 2008 Tetrahedron Lett. 49 2611

    Article  CAS  Google Scholar 

  23. Wang C C and Wu X Y 2011 Tetrahedron 67 2974

    Article  CAS  Google Scholar 

  24. Wang L, Zhang Y, Hu H Y, Fun H K and Xu J H 2005 J. Org. Chem. 703 850

    Google Scholar 

  25. Viswambharan B, Selvakumar K, Madhavan S and Shanmugam P 2010 Org. Lett. 12 2108

    Article  CAS  Google Scholar 

  26. Rahamti A and Eskandari-Vashareh M 2014 J. Chem. Sci. 126 169

    Article  Google Scholar 

  27. Ghahremanzadeh R, Sayyafi M, Ahadi S and Bazgir A 2009 J. Comb. Chem. 11 393

    Article  CAS  Google Scholar 

  28. Liang B, Kalidindi S, Porco J. and Stephenson C R J 2010 Org. Lett. 12 572

    Article  CAS  Google Scholar 

  29. Praveen C, Narendiran S, Dheenkumar P and Premul P T 2013 J. Chem. Sci. 125 1543

    Article  CAS  Google Scholar 

  30. Sun Y, Sun J and Yan C. 2013 Beilstein J. Org. Chem. 9 814

    Google Scholar 

  31. Kiruthika S E, Lakshmi N V, Banu B R and Perumal P T 2011 Tetrahedron Lett. 52 6508

    Article  CAS  Google Scholar 

  32. Wang C., Jiang Y H and Yan C. 2015 Chinese Chem. Lett. 26 889

    Article  CAS  Google Scholar 

  33. Yin Z, Yang L and Wu L 2013 J. Chem. Sci. 125 601

    Article  CAS  Google Scholar 

  34. Mane M M and Pore D M 2016 J. Chem. Sci. 128 657

    Article  CAS  Google Scholar 

  35. Sun Y, Sun J and Yan C. 2012 Tetrahedron Lett. 53 3647

    Article  CAS  Google Scholar 

  36. Mohammadpoor-Baltork I, Memarian H R, Khosropour A R and Nikoofar K 2006 Lett. Org. Chem. 3 768

    Article  CAS  Google Scholar 

  37. Khodaei M M, Mohammadpoor-Baltork I, Memarian H R, Khosropour A R, Nikoofar K and Ghanbary P 2008 J. Heterocyclic Chem. 45 377

    Article  CAS  Google Scholar 

  38. Mohammadpoor-Baltork I, Memarian H R, Khosropour A R and Nikoofar K 2006 Heterocycles 68 1837

    Article  CAS  Google Scholar 

  39. Nikoofar K and Moazzez Dizgarani S. 2015 Monatsh. Chem. 146 1161

    Article  CAS  Google Scholar 

  40. Nikoofar K and Ghanbari K. 2015 Monatsh. Chem. 146 2021

    Article  CAS  Google Scholar 

  41. Ghanbari K. and Nikoofar K 2014 Monatsh. Chem. 145 1867

    Article  CAS  Google Scholar 

  42. Haghighi M and Nikoofar K 2016 J. Saudi Chem. Soc. 20 101

    Article  Google Scholar 

  43. Nikoofar K 2014 Arab. J. Chem. doi:10.1016/j.arabjc.2014. 07.008

  44. Nikoofar K and Gorji S 2015 J. Sulfur Chem. 36 178

    Article  CAS  Google Scholar 

  45. Nikoofar K, Haghighi M, Lashanizadegan M and Ahmadv Z 2015 J. Taibah Univ. Sci. 9 570

    Article  Google Scholar 

  46. Nikoofar K and Moazzez Dizgarani Sh 2015 J. Saudi Chem. Soc. 2015 doi:10.1016/j.jscs.2015.11.006

  47. Nikoofar K and Khalili Z 2016 Z. Naturforsch. 71 31

    Article  CAS  Google Scholar 

  48. Azizian J, Fallah-Bagher-Shaidaei H and Kefayati H 2003 Synth. Commun. 33 789

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors greatly appreciate the Iran National Science Foundation (INSF) for the financial support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KOBRA NIKOOFAR.

Additional information

Supplementary Information (SI)

All additional information pertaining to characterization of the derivatives 4a, 4c–d, and 4g–h, IR spectra (Figures S1, S3, S5, S7, S10) and 1H NMR spectra (Figures S2, S4, S6, S8, S10) are available in Supplementary Information at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 408 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

NIKOOFAR, K., KHADEMI, Z. & HAGHIGHI, M. Nano MgBi2O4: A Novel Green Catalyst for the One-step Cascade Condensation of Arylamines, Acetone and Isatins in Water. J Chem Sci 128, 1805–1811 (2016). https://doi.org/10.1007/s12039-016-1183-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1183-0

Keywords

Navigation