Skip to main content
Log in

A computational study on structure, stability and bonding in Noble Gas bound metal Nitrates, Sulfates and Carbonates (Metal = Cu, Ag, Au)

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A density functional theory based study is performed to investigate the noble gas (Ng = Ar-Rn) binding ability of nitrates, sulfates and carbonates of noble metal (M). Their ability to bind Ng atoms is assessed through bond dissociation energy and thermochemical parameters like dissociation enthalpy and dissociation free energy change corresponding to the dissociation of Ng bound compound producing Ng and the respective salt. The zero-point energy corrected dissociation energy values per Ng atom for the dissociation process producing Ng atom(s) and the corresponding salts range within 6.0–13.1 kcal/mol in NgCuNO3, 3.1–9.8 kcal/mol in NgAgNO3, 6.0–13.2 kcal/mol in NgCuSO4, 3.2–10.1 kcal/mol in NgAgSO4, 5.1–11.7 kcal/mol in Ng2Cu2SO4, 2.5–8.6 kcal/mol in Ng2Ag2SO4, 8.1–19.9 kcal/mol in Ng2Au2SO4, 5.7–12.4 kcal/mol in NgCuCO3, 2.3–8.0 kcal/mol in Ng2Ag2CO3 and 7.3–18.2 kcal/mol in Ng2Au2CO3, with a gradual increase in moving from Ar to Rn. For a given type of system, the stability of Ng bound analogues follows the order as Au > Cu > Ag. All dissociation processes are endothermic in nature whereas they become endergonic as well in most of the cases of Kr-Rn bound analogues at 298 K. Natural population analysis along with the computation of Wiberg bond indices, and electron density analyses provide insights into the nature of the Ng-M bonds. The Ng-M bonds can be represented as partial covalent bonds as supported by the different electron density descriptors.

Different nitrates, sulfates and carbonates of noble metals (M = Cu, Ag, Au) can bind noble gas (Ng) atoms quite effectively. The M-Ng bonds in these compounds are found to be partially covalent in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bartlett N 1962 Proc. Chem. Soc. 218

  2. Kossel W 1916 Ann. Phys. 49 229

    Article  CAS  Google Scholar 

  3. Pauling L 1932 J. Am. Chem. Soc. 54 3570

    Article  CAS  Google Scholar 

  4. (a) Frenking G, Gauss W J and Cremer D 1988 J. Am. Chem. Soc. 110 8007; (b) Koch W, Liu B, Frenking G and 1990 J. Chem. Phys. 92 2464; (c) Frenking G, Koch W, Reichel F and Cremer D 1990 J. Am. Chem. Soc. 112 4240; (d) Veldkamp A and Frenking G 1994 Chem. Phys. Lett. 226 11; (e) Jiménez-Halla C Ó, Fernández I and Frenking G 2009 Angew. Chem. Int. Ed. 48 366; (f) Mück L A, Timoshkin A Y, Hopffgarten M V and Frenking G 2009 J. Am. Chem. Soc. 131 3942; (g) Fernández I and Frenking G 2012 Phys. Chem. Chem. Phys. 14 14869; (h) Zhang Q, Chen M, Zhou M, Andrada D M and Frenking G 2015 J. Phys. Chem. A 119 2543

  5. (a) Pan S, Contreras M, Romero J, Reyes A, Chattaraj P K and Merino G 2013 Chem. Eur. J. 19 2322; (b) Pan S, Jalife S, Romero J, Reyes A, Merino G and Chattaraj P K 2013 Comput. Theor. Chem. 1021 62; (c) Pan S, Jalife S, Kumar R M, Subramanian V, Merino G and Chattaraj P K 2013 ChemPhysChem 14 2511; (d) Khatua M, Pan S and Chattaraj P K 2014 Chem. Phys. Lett. 610–611 351; (e) Pan S, Moreno D, Cabellos J L, Romero J, Reyes A, Merino G and Chattaraj P K 2014 J. Phys. Chem. A 118 487; (f) Khatua M, Pan S and Chattaraj P K 2014 J. Chem. Phys. 140 164306; (g) Pan S, Moreno D, Cabellos J L, Merino G and Chattaraj P K 2014 ChemPhysChem 15 2618; (h) Pan S, Moreno D, Merino G and Chattaraj P K 2014 ChemPhysChem 15 3554; (i) Pan S, Saha R and Chattaraj P K 2015 Int. J. Mol. Sci. 16 6402; (j) Saha R, Pan S and Chattaraj P K 2015 J. Phys. Chem. A 119 6746; (k) Pan S, Saha R, Kumar A, Gupta A, Merino G and Chattaraj P K 2016 Int. J. Quantum Chem. 116 1016; (l) Pan S, Saha R, Mandal S and Chattaraj P K 2016 Phys. Chem. Chem. Phys. 18 11661

  6. (a) Lundell J, Cohen A and Gerber R B 2002 J. Phys. Chem. A 106 11950; (b) Gerber R B 2005 Bull. Israel Chem. Soc. 18 7; (c) Khriachtchev L, Räsänen M and Gerber R B 2009 Acc. Chem. Res. 42 183; (d) Tsivion U and Gerber R B 2009 Chem. Phys. Lett. 482 30; (e) Feldman V I, Kobzarenko A V, Baranova I A, Danchenko A V, Sukhov F O, Tsivion E and Gerber R B 2009 J. Chem. Phys. 131 151101

  7. (a) Grochala W 2009 Pol. J. Chem. 83 87; (b) Lockyear J F, Douglas K, Price S D, Karwowska M, Fijałkowski K J, Grochala W, Remeš M, Roithová J and Schröder D 2010 J. Phys. Chem. Lett. 1 358; (c) Kurzydłowski D, Ejgierd-Zaleski P, Grochala W and Hoffmann R 2011 Inorg. Chem. 50 3832; (d) Grochala W 2012 Phys. Chem. Chem. Phys. 14 14860; (e) Szarek P and Grochala W 2015 J. Phys. Chem. A 119 2483

  8. (a) Antoniotti P, Bronzolino N and Grandinetti F 2003 J. Phys. Chem. A 107 2974; (b) Borocci S, Bronzolino N and Grandinetti F 2006 Chem. Eur. J. 12 5033; (c) Grandinetti F 2004 Int. J. Mass Spectrom. 237 243; (d) Borocci S, Bronzolino N and Grandinetti F 2005 Chem. Phys. Lett. 406 179; (e) Antoniotti P, Bottizzo E, Operti L, Rabezzana R, Borocc S and Grandinetti F 2010 J. Phys. Chem. Lett. 1 2006; (f) Operti L, Rabezzana R, Turco F, Borocci S, Giordani M and Grandinetti F 2011 Chem. Eur. J. 17 10682; (g) Borocci S, Giordani M and Grandinetti F 2015 J. Phys. Chem. A 119 2383

  9. (a) Jayasekharan T and Ghanty T K 2007 J. Chem. Phys. 127 114314; (b) Jayasekharan T and Ghanty T K 2008 J. Chem. Phys. 128 144314; (c) Jayasekharan T and Ghanty T K 2008 J. Chem. Phys. 129 184302; (d) Sirohiwal A, Manna D, Ghosh A, Jayasekharan T and Ghanty T K 2013 J. Phys. Chem. A 117 10772; (e) Manna D, Ghosh A and Ghanty T K 2013 J. Phys. Chem. A 117 14282; (f) Ghosh A, Manna D and Ghanty T K 2015 J. Phys. Chem. A 119 2233

  10. (a) Wijngaarden J V and Jäger W 2001 J. Chem. Phys. 115 6504; (b) Dham A K, McCourt F R and Dickinson A S 2007 J. Chem. Phys. 127 054302; (c) Han J, Philen D and Heaven M C 2006 J. Chem. Phys. 124 054314

  11. Claassen H H, Selig H and Malm J G 1962 J. Am. Chem. Soc. 84 3593

    Article  CAS  Google Scholar 

  12. Hoppe R, Dähne W, Mattauch H and Rödder K 1962 Angew. Chem. Int. Ed. 1 599

    Article  Google Scholar 

  13. (a) Pettersson M, Lundell J and Räsänen M 1995 J. Chem. Phys. 103 205; (b) Pettersson M, Nieminen J, Khriachtchev L and Räsänen M 1997 J. Chem. Phys. 107 8423; (c) Pettersson M, Lundell J, Isamieni L and Räsänen M 1998 J. Am. Chem. Soc. 120 7979; (d) Pettersson M, Lundell J, Khriachtchev L and Räsänen M 1998 J. Chem. Phys. 109 618; (e) Pettersson M, Khriachtchev L, Lundell J and Räsänen M 1999 J. Am. Chem. Soc. 121 11904; (f) Khriachtchev L, Pettersson M, Runeberg N, Lundell J and Räsänen M 2000 Nature 406 874; (g) Khriachtchev L, Pettersson M, Lignell A and Räsänen M 2001 J. Am. Chem. Soc. 123 8610; (h) Khriachtchev L, Pettersson M, Lundell J, Tanskanen H, Kiviniemi T, Runeberg N and Räsänen M 2003 J. Am. Chem. Soc. 125 1454; (i) Khriachtchev L, Tanskanen H, Cohen A, Gerber R B, Lundell J, Pettersson M, Kiljunen H and Räsänen M 2003 J. Am. Chem. Soc. 125 6876; (j) Tanskanen H, Khriachtchev L, Lundell J, Kiljunen H and Räsänen M 2003 J. Am. Chem. Soc. 125 16361

  14. (a) Feldman V I and Sukhov F F 1996 Chem. Phys. Lett. 225 425; (b) Feldman V I, Sukhov F F and Orlov A Y 1997 Chem. Phys. Lett. 280 507; (c) Khriachtchev L, Tanskanen H, Pettersson M, Rasanen M, Ahokas J, Kunttu H and Feldman V 2002 J. Chem. Phys. 116 5649; (d) Feldman V I, Sukhov F F, Orlov A Yu and Tyulpina I V 2003 J. Am. Chem. Soc. 125 4698; (e) Feldman V I, Kobzarenko A V, Baranova I A, Danchenko A V, Sukhov F F, Tsivion E and Gerber R B 2009 J. Chem. Phys. 131 151101; (f) Ryazantsev S V, Kobzarenko A V and Feldman V I 2013 J. Chem. Phys. 139 124315

  15. (a) Thompson C A and Andrews L 1994 J. Am. Chem. Soc. 116 423; (b) Thompson C A and Andrews L 1994 J. Chem. Phys. 100 8689; (c) Wang X, Andrews L, Willmann K, Brosi F and Riedel S 2012 Angew. Chem. Int. Ed. 51 10628; (d) Li J, Bursten B E, Liang B and Andrews L 2002 Science 295 2242; (e) Liang B, Andrews L, Li J and Bursten B E 2002 J. Am. Chem. Soc. 124 9016; (f) Wang X, Andrews L, Li J and Bursten B E 2004 Angew. Chem. Int. Ed. 43 2554

  16. (a) Evans C J, Lesarri A and Gerry M C L 2000 J. Am. Chem. Soc. 122 6100; (b) Evans C J and Gerry M C L 2000 J. Chem. Phys. 112 1321; (c) Evans C J and Gerry M C L 2000 J. Chem. Phys. 112 9363; (d) Evans C J, Rubinoff D S and Gerry M C L 2000 Phys. Chem. Chem. Phys. 2 3943; (e) Reynard L M, Evans C J and Gerry M C L 2001 J. Mol. Spectrosc. 206 33; (f) Walker N R, Reynard L M and Gerry M C L 2002 J. Mol. Struct. 612 109; (g) Michaud J M, Cooke S A and Gerry M C L 2004 Inorg. Chem. 43 3871; (h) Thomas J M, Walker N R, Cooke S A and Gerry M C L 2004 J. Am. Chem. Soc. 126 1235; (i) Cooke S A and Gerry M C L 2004 Phys. Chem. Chem. Phys. 6 3248; (j) Cooke S A and Gerry M C L 2004 J. Am. Chem. Soc. 126 17000; (k) Michaud J M and Gerry M C L 2006 J. Am. Chem. Soc. 128 7613

  17. (a) Emara A A and Schrobilgen G J 1992 Inorg. Chem. 31 1323; (b) Schumacher G A and Schrobilgen G J 1983 Inorg. Chem. 22 2178; (c) Smith G L, Mercier H P and Schrobilgen G J 2007 Inorg. Chem. 46 1369; (d) Schrobilgen G J 1988 J. Chem. Soc., Chem. Commun. 13 863; (e) Hughes M, Brock D S, Mercier H P A and Schrobilgen G J 2011 J. Fluorine Chem. 132 660; (f) Smith G L, Mercier H P A and Schrobilgen G J 2011 Inorg. Chem. 49 12359; (g) Brock D S, Mercier H P A and Schrobilgen G J 2013 J. Am. Chem. Soc. 135 5089; (h) Debackere J R, Mercier H P A and Schrobilgen G J 2014 J. Am. Chem. Soc. 136 3888

  18. (a) Pyykkö P 1995 J. Am. Chem. Soc. 117 2067; (b) Schröder D, Schwarz H, Hrušák J and Pyykkö P 1998 Inorg. Chem. 37 624

  19. Seidel S and Seppelt K 2000 Science 290 117

    Article  CAS  Google Scholar 

  20. Wang X, Andrews L, Brosi F and Riedel S 2013 Chem. Eur. J. 19 1397

    Article  CAS  Google Scholar 

  21. (a) Zhang P-X, Zhao Y-F, Hao F-Y, Zhang G-H, Song X-D and Li X-Y 2008 Mol. Phys. 106 1007; (b) Zhang P X, Zhao Y F, Hao F Y and Li X Y 2008 Int. J. Quantum Chem. 108 937

  22. Pan S, Gupta A, Saha R, Merino G and Chattaraj P K 2015 J. Comp. Chem. 36 29

    Article  Google Scholar 

  23. (a) Ghanty T K 2005 J. Chem. Phys. 123 074323; (b) Ghanty T K 2006 J. Chem. Phys. 124 124304

  24. Bader R F W 1990 In Atoms in Molecules: A Quantum Theory (Oxford, UK: Clarendon Press) pp. 312– 314

  25. Lai T -Y, Yang C -Y, Lin H -J, Yang C -Y and Hu W -P 2011 J. Chem. Phys. 134 244110

    Article  Google Scholar 

  26. Peterson K A, Figgen D, Goll E, Stoll H and Dolg M 2003 J. Chem. Phys. 119 11113

    Article  CAS  Google Scholar 

  27. Wiberg K B 1968 Tetrahedron 24 1083

    Article  CAS  Google Scholar 

  28. Gaussian 09, Revision C 1, Frisch M J et al. 2009 Gaussian, Inc., Wallingford CT

  29. Lu T and Chen F W 2012 J. Comput. Chem. 33 580

    Article  Google Scholar 

  30. (a) Pearson R G 1987 J. Chem. Educ. 64 561; (b) Parr R G and Chattaraj P K 1991 J. Am. Chem. Soc. 113 1854; (c) Chattaraj P K and Parr R G 1993 Density functional theory of chemical hardness In Chemical Hardness (Structure and Bonding) Vol. 80 K D Sen and D M P Mingos (Eds.) (Berlin: Springer- Verlag) pp. 11–25; (d) Pan S, Sola M and Chattaraj P K 2013 J. Phys. Chem. A 117 1843

  31. (a) Cioslowski J and Mixon S T 1992 Can. J. Chem. 70 443; (b) Cioslowski J and Mixon S T 1992 J. Am. Chem. Soc. 114 4382; (c) Haaland A, Shorokhov D J and Tverdova N V 2004 Chem. Eur. J. 10 4416; (d) Krapp A and Frenking G 2007 Chem. Eur. J. 13 8256; (e) Poater J, Visser R, Solà M and Bickelhaupt F M 2007 J. Org. Chem. 72 1134; (f) Cerpa E, Krapp A, Vela A and Merino G 2008 Chem. Eur. J. 14 10232; (g) Cerpa E, Krapp A, Flores-Moreno R, Donald K J and Merino G 2009 Chem. Eur. J. 15 1985; (h) Macchi P, Proserpio D M and Sironi A J 1998 J. Am. Chem. Soc. 120 13429; (i) Macchi P, Garlaschelli L, Martinengo S and Sironi A J 1999 J. Am. Chem. Soc. 121 10428; (j) Novozhilova I V, Volkov A V and Coppens P J 2003 J. Am. Chem. Soc. 125 1079; (k) Pan S, Gupta A, Mandal S, Moreno D, Merino G and Chattaraj P K 2015 Phys. Chem. Chem. Phys. 17 972

  32. Cremer D and Kraka E 1984 Angew. Chem. Int. Ed. Engl. 23 627

    Article  Google Scholar 

Download references

Acknowledgments

PKC thanks Department of Science & Technology, New Delhi for the J. C. Bose National Fellowship. MG and SP thank Council of Scientific & Industrial Research, New Delhi, for their fellowships. US would like to thank Centre for Theoretical studies (CTS), IIT Kharagpur for providing him CTS visiting fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to UTPAL SARKAR or PRATIM KUMAR CHATTARAJ.

Additional information

Supplementary Information (SI)

Figures S1 and S2, and Table S1 are available as Supplementary Information at www.ias.ac.in/chemsci.

Special Issue on CHEMICAL BONDING

Celebrating 100 years of Lewis Chemical Bond

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 5.32 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GHARA, M., PAN, S., DEB, J. et al. A computational study on structure, stability and bonding in Noble Gas bound metal Nitrates, Sulfates and Carbonates (Metal = Cu, Ag, Au). J Chem Sci 128, 1537–1548 (2016). https://doi.org/10.1007/s12039-016-1150-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1150-9

Keywords

Navigation