Skip to main content
Log in

A fluorescent sensor based on binaphthol-quinoline Schiff base for relay recognition of Zn2+ and oxalate in aqueous media

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

To develop an effective fluorescent chemosensor for relay recognition of Zn2+ and oxalate, a new fluorescent sensor based on binaphthol-quinoline Schiff base L 1 was designed and synthesized. In DMSO-H2O (1/1, v/v, HEPES 10 mM, pH = 7.4) solution, L 1 exhibits highly selective fluorescence turn on response to Zn2+ over other metal ions. The Zn2+ recognition event is barely interfered by other coexisting metal ions except Cu 2+, Co 2+ and Ni 2+. The in situ generated L 1 -Zn\(^{\mathrm {2+}}_{\mathrm {}}\)complex was further used as a chemosensing ensemble for oxalate detection. The complex L 1 -Zn2+ displays high selectivity to oxalate with significant fluorescence quenching through Zn2+ ion displacement approach. In addition, application of L 1 for imaging of Zn2+ and oxalate in living HeLa cells was also examined.

A new binaphthol-quinoline Schiff base-based fluorescent sensor L 1 exhibits highly selective relay recognition of Zn2+ and oxalate through fluorescence “off-on-off” functionality in DMSO-H2O (1/1, v/v, HEPES 10 mM, pH = 7.4) solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Scheme 2.
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Berg J M and Shi Y 1996 Science 271 1081

    Article  CAS  Google Scholar 

  2. Walker C F and Black R E 2004 Annu. Rev. Nutr. 24 255

    Article  CAS  Google Scholar 

  3. (a) Chen Y, Bai Y, Han Z, He W and Guo Z 2015 Chem. Soc. Rev. 44 4517; (b) Jiang P and Guo Z 2004 Coord. Chem. Rev. 248 205; (c) Xu Z, Yoon J and Spring D R 2010 Chem. Soc. Rev. 39 1996; (d) Bhaumik C, Maity D, Das S and Baitalik S 2012 RSC Adv. 2 2581; (e) Mardanya S, Karmakar S, Das S and Baitalik S 2015 Sens. Actuators, B 206 701; (f) Mondal D, Bar M, Maity D and Baitalik S 2015 J. Phys. Chem. C 119 25429; (g) Ding A, Tang F, Wang T, Tao X and Yang J 2015 J. Chem. Sci. 127 375; (h) Chao D 2016 J. Chem. Sci. 128 133

  4. Capra R H, Strumia M, Vadgama P M and Baruzzi A M 2005 Anal. Chimi. Acta 530 49

    Article  CAS  Google Scholar 

  5. Li H, Chai X -S, DeMartini N, Zhan H and Fu S 2008 J. Chromatogr. A 1192 208

    Article  CAS  Google Scholar 

  6. Liu Y, Huang J, Wang D, Hou H and You T 2010 Anal. Methods 2 855

    Article  CAS  Google Scholar 

  7. (a) Tang L, Park J, Kim H-J, Kim Y, Kim S J, Chin J and Kim K M 2008 J. Am. Chem. Soc. 130 12606; (b) Hu M and Feng G 2012 Chem. Commun. 48 6951; (c) Wang G, Zhu H, Lin Y, Chen Y and Fu N 2015 Sens. Actuators, B 206 624; (d) He C, Qian X, Xu Y, Yang C, Yin L and Zhu W 2011 Dalton Trans. 40 1034

  8. (a) Mummidivarapu V S, Nehra A, Hinge V K and Rao C P 2012 Org. Lett. 14 2968; (b) Yang Y, Yin C, Huo F, Chao J and Zhang Y 2014 Sens. Actuators, B 204 402; (c) Tang L, Zhou P, Huang Z, Zhao J and Cai M 2013 Tetrahedron Lett. 54 5948; (d) Tang L, Cai M, Zhou P, Zhao J, Zhong K, Hou S and Bian Y 2013 RSC Adv. 3 16802; (e) Peng Y, Dong Y-M, Dong M and Wang Y-W 2012 J. Org. Chem. 77 9072; (f) Tang L, Dai X, Cai M, Zhao J, Zhou P and Huang Z 2014 Spectrochim. Acta, Part A 122 656; (g) Kaur N and Alreja P 2015 J. Chem. Sci. 127 1253

  9. Ye F, Zheng Z -J, Deng W -H, Zheng L -S, Deng Y, Xia C -G and Xu L -W 2013 Chem. - Eur. J. 8 2242

    CAS  Google Scholar 

  10. Zhu J -F, Yuan H, Chan W -H and Lee A W M 2010 Org. Biomol. Chem. 8 3957

    Article  CAS  Google Scholar 

  11. Shi F, Shen J K, Chen D, Fog K, Thirstrup K, Hentzer M, Karlsson J -J, Menon V, Jones K A, Smith K E and Smith G 2011 ACS Med. Chem. Lett. 2 303

    Article  CAS  Google Scholar 

  12. Sun Y -Q, Wang P, Liu J, Zhang J and Guo W 2012 Analyst 137 3430

    Article  CAS  Google Scholar 

  13. Zhang Y, Guo X, Si W, Jia L and Qian X 2008 Org. Lett. 10 473

    Article  CAS  Google Scholar 

  14. Lin W, Yuan L, Cao Z, Feng Y and Long L 2009 Chem. - Eur. J. 15 5096

    Article  CAS  Google Scholar 

  15. Lu Q, Hou J, Wang J, Xu B, Zhang J and Yu X 2013 Chin. J. Chem. 31 641

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Natural Science Foundation of China (No. 21176029, 21476029), Liaoning BaiQianWan Talents Program (No. 2012921057), and the Program for Liaoning Excellent Talents in University (LR2015001) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LIJUN TANG.

Additional information

Supplementary Information

Supplementary Information (Figures S1S6) is available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 761 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

TANG, L., WU, D., HUANG, Z. et al. A fluorescent sensor based on binaphthol-quinoline Schiff base for relay recognition of Zn2+ and oxalate in aqueous media. J Chem Sci 128, 1337–1343 (2016). https://doi.org/10.1007/s12039-016-1124-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1124-y

Keywords

Navigation