Skip to main content
Log in

A Fluorescent Chemosensor Based on Schiff Base for the Determination of Zn2+, Cd2+and Hg2+

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Metal complexes were obtained by the reaction of zinc, cadmium and mercury(II) salts with Schiff base HL (N(salicylidene)benzylamine). HL was synthesized by the condensation reaction of benzylamine and 2-hydroxybenzaldehyde. The fluorescence properties of the Schiff base and its metal complexes were studied in ethanol-water solutions. HL was examined for its utility as a fuorescent chemosensor for the determination of Zn2+, Cd2+ and Hg2+ in aqueous samples. The HL chemosensor was found to be sensitive to Zn2+, Cd2+ and Hg2+ than some metal ions and its complexes emitted strong fluorescence at 452 nm for Zn2+ at 474 nm for Cd2+ and at 491 nm for Hg2+, respectively. It was determined that HL forms complexes with a ratio of 2:1 for Zn2+ and Hg2+ and with a ratio of 1:1 for Cd2+ by Job plots. For the detection of Zn2+, Cd2+ and Hg2+ in aqueous samples, pH, solvent type and ligand concentration were optimized for an analytical method based on HL chemosensor. HL gave a wide range of linearity with Zn2+, Hg2+ and Cd2+, the limit of detection was found to be 2.7 × 10-7 M, 7.5 × 10-7 M and 6.0 × 10-7 M, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig 9
Fig. 10

Similar content being viewed by others

Availability of Data and Material

Available

References

  1. Nagesh G, Raj KM, Mruthyunjayaswamy B (2015) Synthesis, characterization, thermal study and biological evaluation of Cu (II), Co (II), Ni (II) and Zn (II) complexes of Schiff base ligand containing thiazole moiety. J Mol Struct 1079:423–432

    CAS  Google Scholar 

  2. Zayed EM, Mohamed GG, Hindy AM (2015) Transition metal complexes of novel Schiff base. J Therm Anal Calorim 120(1):893–903

    CAS  Google Scholar 

  3. Mahmoud WH, Deghadi RG, Mohamed GG (2016) Novel Schiff base ligand and its metal complexes with some transition elements. Synthesis, spectroscopic, thermal analysis, antimicrobial and in vitro anticancer activity. Appl Organomet Chem 30(4):221–230

    CAS  Google Scholar 

  4. Wang P, Lee H (1997) Recent applications of high-performance liquid chromatography to the analysis of metal complexes. J Chromatogr A 789(1-2):437–451

    CAS  PubMed  Google Scholar 

  5. Abu-Dief AM, Mohamed IM (2015) A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-suef Univ J Basic Appl Sci 4(2):119–133

    PubMed  PubMed Central  Google Scholar 

  6. Dai C-H, Mao F-L (2012) Synthesis and crystal structures of two dinuclear Schiff base cadmium (II) complexes. Synthesis React Inorg Metal-Org Nano-Metal Chem 42(4):537–541

    CAS  Google Scholar 

  7. Majumder A, Rosair GM, Mallick A, Chattopadhyay N, Mitra S (2006) Synthesis, structures and fluorescence of nickel, zinc and cadmium complexes with the N, N, O-tridentate Schiff base N-2-pyridylmethylidene-2-hydroxy-phenylamine. Polyhedron 25(8):1753–1762

    CAS  Google Scholar 

  8. Mohamed GG, Omar M, Ibrahim AA (2009) Biological activity studies on metal complexes of novel tridentate Schiff base ligand. Spectroscopic and thermal characterization. Eur J Med Chem 44(12):4801–4812

    CAS  PubMed  Google Scholar 

  9. Elerman Y, Kabak M, Tahir MN (1996) Bis (N-2-propylsalicylideneamino-N, O) cobalt (II). Acta Crystallogr Sect C: Cryst Struct Commun 52(10):2434–2436

    Google Scholar 

  10. Atakol O, Kenar A, Kabak M (1997) Some complexes of Nickel (II) with Ono Type Schiff Bases and their Monoligand Adducts. Part II Synthesis and Reactivity in Inorganic and Metal-Organic. Chemistry 27(1):29–40

    CAS  Google Scholar 

  11. Chakraborty J, Thakurta S, Samanta B, Ray A, Pilet G, Batten SR, Jensen P, Mitra S (2007) Synthesis, characterisation and crystal structures of three trinuclear cadmium (II) complexes with multidentate Schiff base ligands. Polyhedron 26(17):5139–5149

    CAS  Google Scholar 

  12. Saghatforoush LA, Aminkhani A, Ershad S, Karimnezhad G, Ghammamy S, Kabiri R (2008) Preparation of Zinc (II) and Cadmium (II) Complexes of the Tetradentate Schiff Base Ligand 2-((E)-(2-(2-(pyridine-2-yl)-ethylthio) ethylimino) methyl)-4-bromophenol (PytBrsalH). Molecules 13(4):804–811

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Germain ME, Vargo TR, Khalifah PG, Knapp MJ (2007) Fluorescent detection of nitroaromatics and 2, 3-dimethyl-2, 3-dinitrobutane (DMNB) by a zinc complex:(salophen) Zn. Inorg Chem 46(11):4422–4429

    CAS  PubMed  Google Scholar 

  14. Basak S, Sen S, Marschner C, Baumgartner J, Batten SR, Turner DR, Mitra S (2008) Synthesis, crystal structures and fluorescence properties of two new di-and polynuclear Cd (II) complexes with N2O donor set of a tridentate Schiff base ligand. Polyhedron 27(4):1193–1200

    CAS  Google Scholar 

  15. Maxim C, Pasatoiu TD, Kravtsov VC, Shova S, Muryn CA, Winpenny RE, Tuna F, Andruh M (2008) Copper (II) and zinc (II) complexes with Schiff-base ligands derived from salicylaldehyde and 3-methoxysalicylaldehyde: Synthesis, crystal structures, magnetic and luminescence properties. Inorg Chim Acta 361(14-15):3903–3911

    CAS  Google Scholar 

  16. Qian S-S, Zhang M, Wang Y-N, Tian F-Y, Liu L, You Z-L, Zhu H-L (2013) Synthesis, crystal structures, and fluorescent properties of zinc and cadmium (II) complexes with tridentate Schiff bases. J Coord Chem 66(6):1006–1015

    CAS  Google Scholar 

  17. Gunnlaugsson T, Lee TC, Parkesh R (2004) Highly selective fluorescent chemosensors for cadmium in water. Tetrahedron 60(49):11239–11249

    CAS  Google Scholar 

  18. Lo WK, Wong WK, Wong WY, Guo J (2005) Synthesis, Crystal Structures and Photophysical Properties of Novel Tetranuclear Cadmium (II) Schiff-Base Complexes. Eur J Inorg Chem 2005(19):3950–3954

    Google Scholar 

  19. De Silva AP, Gunaratne HN, Gunnlaugsson T, Huxley AJ, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97(5):1515–1566

    PubMed  Google Scholar 

  20. Wang L, Qin W, Liu W (2010) A sensitive Schiff-base fluorescent indicator for the detection of Zn2+. Inorg Chem Commun 13(10):1122–1125

    CAS  Google Scholar 

  21. You Z-L, Wang X-L, Zhang J-C, Wang C, Zhou X-S (2011) Synthesis, crystal structures, and fluorescence properties of two dinuclear cadmium (II) complexes derived from N-isopropyl-N′-(1-pyridin-2-ylethylidene) ethane-1, 2-diamine. Struct Chem 22(6):1297–1302

    CAS  Google Scholar 

  22. Zhou Y, Li Z-X, Zang S-Q, Zhu Y-Y, Zhang H-Y, Hou H-W, Mak TC (2012) A novel sensitive turn-on fluorescent Zn2+ chemosensor based on an easy to prepare C 3-symmetric schiff-base derivative in 100% aqueous solution. Org Lett 14(5):1214–1217

    CAS  PubMed  Google Scholar 

  23. Pamuk M, Algi F (2012) Synthesis of a novel on/off fluorescent cadmium (II) probe. Tetrahedron Lett 53(51):7010–7012

    CAS  Google Scholar 

  24. Cai Y, Meng X, Wang S, Zhu M, Pan Z, Guo Q (2013) A quinoline based fluorescent probe that can distinguish zinc (II) from cadmium (II) in water. Tetrahedron Lett 54(9):1125–1128

    CAS  Google Scholar 

  25. Hosseini M, Ghafarloo A, Ganjali MR, Faridbod F, Norouzi P, Niasari MS (2014) A turn-on fluorescent sensor for Zn2+ based on new Schiff's base derivative in aqueous media. Sensors Actuators B Chem 198:411–415

    CAS  Google Scholar 

  26. Roy N, Pramanik HA, Paul PC, Singh ST (2014) A sensitive Schiff-base fluorescent chemosensor for the selective detection of Zn 2+. J Fluoresc 24(4):1099–1106

    PubMed  Google Scholar 

  27. Ergun E, Ergun Ü, İleri Ö, Küçükmüzevir MF (2018) An investigation of some Schiff base derivatives as chemosensors for Zn (II): The performance characteristics and potential applications. Spectrochim Acta A Mol Biomol Spectrosc 203:273–286

    CAS  PubMed  Google Scholar 

  28. Wang Y, Ma Z-Y, Zhang D-L, Deng J-L, Chen X, Xie C-Z, Qiao X, Li Q-Z, Xu J-Y (2018) Highly selective and sensitive turn-on fluorescent sensor for detection of Al3+ based on quinoline-base Schiff base. Spectrochim Acta A Mol Biomol Spectrosc 195:157–164

    CAS  PubMed  Google Scholar 

  29. De Acha N, Elosúa C, Corres JM, Arregui FJ (2019) Fluorescent sensors for the detection of heavy metal ions in aqueous media. Sensors 19(3):599

    Google Scholar 

  30. Aazam ES, Husseiny AE, Al-Amri H (2012) Synthesis and photoluminescent properties of a Schiff-base ligand and its mononuclear Zn (II), Cd (II), Cu (II), Ni (II) and Pd (II) metal complexes. Arab J Chem 5(1):45–53

    CAS  Google Scholar 

  31. Bayraktutan T, Meral K (2016) Merocyanine 540 adsorbed on polyethylenimine-functionalized graphene oxide nanocomposites as a turn-on fluorescent sensor for bovine serum albumin. Phys Chem Chem Phys 18(33):23400–23406

    CAS  PubMed  Google Scholar 

  32. Bayraktutan T, Onganer Y, Meral K (2016) Polyelectrolyte-induced H-aggregation of Merocyanine 540 and its application in metal ions detection as a colorimetric sensor. Sensors Actuators B Chem 226:52–61

    CAS  Google Scholar 

  33. Cheng T, Xu Y, Zhang S, Zhu W, Qian X, Duan L (2008) A highly sensitive and selective OFF-ON fluorescent sensor for cadmium in aqueous solution and living cell. J Am Chem Soc 130(48):16160–16161

    CAS  PubMed  Google Scholar 

  34. Roy P, Dhara K, Manassero M, Banerjee P (2009) Synthesis, characterization and selective fluorescent zinc (II) sensing property of three Schiff-base compounds. Inorg Chim Acta 362(8):2927–2932

    CAS  Google Scholar 

  35. Xue L, Liu C, Jiang H (2009) Highly sensitive and selective fluorescent sensor for distinguishing cadmium from zinc ions in aqueous media. Org Lett 11(7):1655–1658

    CAS  PubMed  Google Scholar 

  36. Das S, Sarkar BN, Bhar K, Chattopadhyay S, Fun H-K, Mitra P, Ghosh BK (2010) Classical tetradentate chelation and novel bis (bidentate) congregation motifs of a neutral N-donor Schiff base in dinuclear cadmium (II) complexes: Synthesis, structure and luminescence behaviour. Inorg Chem Commun 13(3):353–357

    CAS  Google Scholar 

  37. Fang Z-L, Nie Q-X (2010) Zinc (II) and cadmium (II) complexes of Schiff bases derived from amino acids and pyridine-3-carboxaldehyde: synthesis, crystal structures, and fluorescence. J Coord Chem 63(13):2328–2336

    CAS  Google Scholar 

  38. Hu Y, Q-q L, Li H, Guo Q-n, Lu Y-g, Z-y L (2010) A novel class of Cd (II), Hg (II) turn-on and Cu (II), Zn (II) turn-off Schiff base fluorescent probes. Dalton T 39(47):11344–11352

    CAS  Google Scholar 

  39. Li L, Dang Y-Q, Li H-W, Wang B, Wu Y (2010) Fluorescent chemosensor based on Schiff base for selective detection of zinc (II) in aqueous solution. Tetrahedron Lett 51(4):618–621

    CAS  Google Scholar 

  40. Goswami P, Das DK (2012) A new highly sensitive and selective fluorescent cadmium sensor. J Fluoresc 22(1):391–395

    CAS  PubMed  Google Scholar 

  41. Hsieh WH, Wan C-F, Liao D-J, Wu A-T (2012) A turn-on Schiff base fluorescence sensor for zinc ion. Tetrahedron Lett 53(44):5848–5851

    CAS  Google Scholar 

  42. Chen C-H, Liao D-J, Wan C-F, Wu A-T (2013) A turn-on and reversible Schiff base fluorescence sensor for Al 3+ ion. Analyst 138(9):2527–2530

    CAS  PubMed  Google Scholar 

  43. Kim KB, Kim H, Song EJ, Kim S, Noh I, Kim C (2013) A cap-type Schiff base acting as a fluorescence sensor for zinc (II) and a colorimetric sensor for iron (II), copper (II), and zinc (II) in aqueous media. Dalton Trans 42(47):16569–16577

    CAS  PubMed  Google Scholar 

  44. Liu X, Zhang N, Zhou J, Chang T, Fang C, Shangguan D (2013) A turn-on fluorescent sensor for zinc and cadmium ions based on perylene tetracarboxylic diimide. Analyst 138(3):901–906

    CAS  PubMed  Google Scholar 

  45. Liu H-M, Venkatesan P, Wu S-P (2014) A sensitive and selective fluorescent sensor for Zinc (II) and its application to living cell imaging. Sensors Actuators B Chem 203:719–725

    CAS  Google Scholar 

  46. Singh TS, Paul PC, Pramanik HA (2014) Fluorescent chemosensor based on sensitive Schiff base for selective detection of Zn2+. Spectrochim Acta A Mol Biomol Spectrosc 121:520–526

    CAS  PubMed  Google Scholar 

  47. You GR, Park GJ, Lee SA, Ryu KY, Kim C (2015) Chelate-type Schiff base acting as a colorimetric sensor for iron in aqueous solution. Sensors Actuators B Chem 215:188–195

    CAS  Google Scholar 

  48. Kao M-H, Chen T-Y, Cai Y-R, Hu C-H, Liu Y-W, Jhong Y, Wu A-T (2016) A turn-on Schiff-base fluorescence sensor for Mg2+ ion and its practical application. J Lumin 169:156–160

    CAS  Google Scholar 

  49. Wu D, Sedgwick AC, Gunnlaugsson T, Akkaya EU, Yoon J, James TD (2017) Fluorescent chemosensors: the past, present and future. Chem Soc Rev 46(23):7105–7123

    CAS  PubMed  Google Scholar 

  50. Ji Y-F, Wang R, Ding S, Du C-F, Liu Z-L (2012) Synthesis, crystal structures and fluorescence studies of three new Zn (II) complexes with multidentate Schiff base ligands. Inorg Chem Commun 16:47–50

    CAS  Google Scholar 

  51. Li M, Lu H-Y, Liu R-L, Chen J-D, Chen C-F (2012) Turn-on fluorescent sensor for selective detection of Zn2+, Cd2+, and Hg2+ in water. J Org Chem 77(7):3670–3673

    CAS  PubMed  Google Scholar 

  52. Jiménez-Sánchez A, Ortíz B, Navarrete VO, Farfán N, Santillan R (2015) Two fluorescent Schiff base sensors for Zn 2+: the Zn 2+/Cu 2+ ion interference. Analyst 140(17):6031–6039

    PubMed  Google Scholar 

  53. Dong W-K, Akogun SF, Zhang Y, Sun Y-X, Dong X-Y (2017) A reversible “turn-on” fluorescent sensor for selective detection of Zn2+. Sensors Actuators B Chem 238:723–734

    CAS  Google Scholar 

  54. Sezer H, Ergun E, Ergun Ü (2018) Bis-N, N'(Salisiliden)-1, 4-Bütandiaminin çeşitli metallere karşı gösterdiği floresans özelliklerinin incelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 6(4):1163–1177

    Google Scholar 

  55. Choi YW, Park GJ, Na YJ, Jo HY, Lee SA, You GR, Kim C (2014) A single schiff base molecule for recognizing multiple metal ions: a fluorescence sensor for Zn (II) and Al (III) and colorimetric sensor for Fe (II) and Fe (III). Sensors Actuators B Chem 194:343–352

    CAS  Google Scholar 

  56. Hirano T, Kikuchi K, Urano Y, Higuchi T, Nagano T (2000) Highly zinc-selective fluorescent sensor molecules suitable for biological applications. J Am Chem Soc 122(49):12399–12400

    CAS  Google Scholar 

  57. Wang W, Li R, Song T, Zhang C, Zhao Y (2016) Study on the fluorescent chemosensors based on a series of bis-Schiff bases for the detection of zinc (II). Spectrochim Acta A Mol Biomol Spectrosc 164:133–138

    CAS  PubMed  Google Scholar 

  58. Yan J, Fan L, J-c Q, C-r L, Yang Z-y (2016) A novel and resumable Schiff-base fluorescent chemosensor for Zn (II). Tetrahedron Lett 57(26):2910–2914

    CAS  Google Scholar 

  59. Parveen N, Ansari MO, Ahmad MF, Jameel S, Shadab G (2017) Zinc: An element of extensive medical importance. Curr Med Res Pract 7(3):90–98

    Google Scholar 

  60. Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40(12):1335–1351

    CAS  PubMed  Google Scholar 

  61. Kim HN, Ren WX, Kim JS, Yoon J (2012) Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem Soc Rev 41(8):3210–3244

    CAS  PubMed  Google Scholar 

  62. Su Q, Niu Q, Sun T, Li T (2016) A simple fluorescence turn-on chemosensor based on Schiff-base for Hg2+-selective detection. Tetrahedron Lett 57(38):4297–4301

    CAS  Google Scholar 

  63. Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol 31(3):241–293

    CAS  Google Scholar 

  64. Zhang C, Gao B, Zhang Q, Zhang G, Shuang S, Dong C (2016) A simple Schiff base fluorescence probe for highly sensitive and selective detection of Hg2+ and Cu2+. Talanta 154:278–283

    CAS  PubMed  Google Scholar 

  65. Bayraktutan T, Onganer Y (2017) Biophysical influence of coumarin 35 on bovine serum albumin: Spectroscopic study. Spectrochim Acta A Mol Biomol Spectrosc 171:90–96

    CAS  PubMed  Google Scholar 

  66. Bayraktutan T (2019) Molecular interaction between cationic polymer polyethyleneimine and rose bengal dye: a spectroscopic study. J Turk Chem Soc Sect A Chem 6(3):311–318

    CAS  Google Scholar 

  67. EPA (1980) Ambient water criteria for zinc. United States Enviromental Protection Agency Web. https://www.epa.gov/sites/production/files/2018-12/documents/ambient-wqc-zinc.pdf. Accessed 4 May 2020

  68. EPA (2009) National primary drinking water regulation table. United States Enviromental Protection Agency Web. https://www.epa.gov/sites/production/files/2016-06/documents/npwdr_complete_table.pdf. Accessed 4 May 2020

Download references

Funding

This research did not receive any specific grant from funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable

Corresponding author

Correspondence to E. K. İnal.

Ethics declarations

Conflicts of Interest

The author declares that there is no conflict of interest.

Code Availability

ChemBioDraw Ultra 14.0

Adobe Photoshop CC (64 Bit)

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İnal, E.K. A Fluorescent Chemosensor Based on Schiff Base for the Determination of Zn2+, Cd2+and Hg2+. J Fluoresc 30, 891–900 (2020). https://doi.org/10.1007/s10895-020-02563-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02563-6

Keywords

Navigation