Skip to main content
Log in

Synthesis and characterization of gold nanoparticles incorporated bentonite clay for electrocatalytic sensing of arsenic(III)

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In the present manuscript, a simple and easy route to synthesize bentonite (bt) clay-supported gold nanoparticles (Au NPs) is reported (represented as Au-bt). Application of this new environmentally benign material in electrocatalytic determination of arsenite (As(III)) was studied. The successful synthesis and incorporation of Au NPs into the bt clay is supported by spectroscopic, microscopic and electrochemical methods. The synthesized Au-bt material was used to modify glassy carbon electrode (GC) by the evaporation of Au-bt aqueous suspension dropped on the surface of the GC (GC/Au-bt). Cyclic voltammetry and chronoamperometry studies of As(III) solutions were performed with this GC/Au-bt electrode which act as efficient platform for the electro-oxidation of As(III) to As(V) at a very low overpotential. Kinetic parameters were evaluated for the oxidation of As(III) at the GC/Au-bt platforms. A wide linear calibration range for the determination of As(III) from 1 to 1700 μM was obtained with high reproducibility and stability. A limit of detection, 0.1 μM was achieved with high sensitivity. Additionally, it showed a good selectivity for the determination of As(III) in the presence of copper(II) and other interfering ions suggesting a promising new route for trace level determination of As(III) in neutral conditions.

Bentonite clay supported, gold nanoparticle-based, biocompatible material was synthesized (represented as Au-bt) and it shows remarkable elecrocatalytic activity for As(III) oxidation. Based on the electrocatalytic activity of synthesized Au-bt material, As(III) determination is demonstrated in neutral electrolyte solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Manivannan S and Ramaraj R 2009 J. Chem. Sci. 121 735

    Article  CAS  Google Scholar 

  2. Zhu C, Guohai Y, Li H, Du D and Lin Y 2015 Anal. Chem. 87 230

    Article  CAS  Google Scholar 

  3. Rastogi P K, Ganesan V and Krishnamoorthi S 2014 J. Mater. Chem. A 2 933

    Article  CAS  Google Scholar 

  4. Guo J and Suslick S K 2012 Chem. Commun. 48 11094

    Article  CAS  Google Scholar 

  5. Gupta R and Ganesan V 2015 Energy Environ. Focus 4 209

    Article  Google Scholar 

  6. Premkumar J and Ramaraj R 1997 J. Solid State Electrochem. 1 172

    Article  CAS  Google Scholar 

  7. Ramaraj R 2006 J. Chem. Sci. 118 593

    Article  CAS  Google Scholar 

  8. Das G, Kalita R D, Gogoi P, Buragohain A K and Karak N 2014 Appl. Clay Sci. 90 18

    Article  CAS  Google Scholar 

  9. Mousty C 2010 Anal. Bioanal. Chem. 396 315

    Article  CAS  Google Scholar 

  10. Azad U P, Turllapati S, Rastogi P K and Ganesan V 2014 Electrochim. Acta 127 193

    Article  CAS  Google Scholar 

  11. Azad U P, Prajapati N and Ganesan V 2015 Bioelectrochem 101 120

    Article  CAS  Google Scholar 

  12. Wagheu J K, Forano C, Besse-Hoggan P, Tonle I K, Ngameni E and Mousty C 2013 Talanta 103 337

    Article  Google Scholar 

  13. Zunic M J, Milutinovic Nikolic A D, Stankovic D M, Manojlovic D D, Jovic-Jovicic N P, Bankovic P T, Mojovic Z D and Jovanovic D M 2014 Appl. Surf. Sci. 313 440

    Article  CAS  Google Scholar 

  14. Wu Y, Liu L, Zhan S, Wang F and Zhou P 2012 Analyst 137 4171

    Article  CAS  Google Scholar 

  15. Luong J H T, Lam E and Male K B 2014 Anal. Methods 6 6157

    Article  CAS  Google Scholar 

  16. World Health Organization Guidelines http://www.who.int/water_ sanitation_health/dwq/chemicals/arsenic.pdf

  17. Sitko R, Janik P, Zawisza B, Talik E, Margui E and Queralt I 2015 Anal. Chem. 87 3535

    Article  CAS  Google Scholar 

  18. Dash S and Munichandraiah N 2014 Analyst 139 1789

    Article  CAS  Google Scholar 

  19. Du Y, Zhao W, Xu J -J and Chen H -Y 2009 Talanta 79 243

    Article  CAS  Google Scholar 

  20. Xu H, Zeng L, Xing S, Shi G, Chen J, Xian Y and Jin L 2008 Electrochem. Commun. 10 1893

    Article  CAS  Google Scholar 

  21. Raj C R, Okajima T and Ohsaka T 2003 J. Electroanal. Chem. 543 127

    Article  CAS  Google Scholar 

  22. Das S K, Dickinson C, Lafir F, Brougham D F and Marsili E 2012 Green Chem. 14 1322

    Article  CAS  Google Scholar 

  23. Rajkumar M, Chiou S -C, Chen S -M and Thiagarajan S 2011 Int. J. Electrochem. Sci. 6 3789

    CAS  Google Scholar 

  24. Salimi A, Mamkhezri H, Hallaj R and Soltanian S 2008 Sens. Actuators, B 129 246

    Article  CAS  Google Scholar 

  25. Azad U P and Ganesan V 2014 ChemElectroChem 2 379

    Article  Google Scholar 

  26. Jia Z, Simm A O, Dai X and Compton R G 2006 J. Electroanal. Chem. 587 247

    Article  CAS  Google Scholar 

  27. Dai X and Compton R G 2006 Analyst 131 516

    Article  CAS  Google Scholar 

  28. Sanchez J A, Rivas B L, Pooley S A, Basaez L, Pereira E, Pignot-Paintrand I, Bucher C, Royal G, Saint-Aman E and Moutet J -C 2010 Electrochim. Acta 55 4876

    Article  CAS  Google Scholar 

  29. Sanllorente-Mendez S, Dominguez-Renedo O and Arcos-Martinez M J 2009 Electroanalysis 21 635

    Article  CAS  Google Scholar 

  30. Rajkumar M, Thiagarajan S and Chen S -M 2011 Int. J. Electrochem. Sci. 6 3164

    CAS  Google Scholar 

  31. Ndlovu T, Mamba B B, Sampath S, Krause R W and Arotiba O A 2014 Electrochim. Acta 128 48

    Article  CAS  Google Scholar 

Download references

Acknowledgements

UGC (42-271/2013 (SR)) and CSIR (01(2708)/13/ EMR-II), New Delhi, India are gratefully acknowledged for the financial support. PKR acknowledges CSIR for the senior research fellowship. We are thankful to Prof. C. Retna Raj for useful suggestions, Prof. O. N. Srivastava for TEM and SEM facilities and Prof. S. A. John for EDAX and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to VELLAICHAMY GANESAN.

Additional information

Supplementary Information

Additional information such as EDAX of Au-bt (figure S1), CV responses of GC/Au-bt ESP at different scan rates (figure S2), Nyquist plots for GC/Au-bt ESP in the absence and presence of As(III) (figure S3), CV responses obtained for As(III) in presence of Cu(II) at GC/Au-bt ESP (figure S4) and comparison of analytical characteristics (table S1) are given in the supplementary information. The electronic supplementary information is available at www.ias.ac.in/chemsci.

Dedicated to Prof. R. Ramaraj on the occasion of his 60th birth anniversary.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 193 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

RASTOGI, P.K., YADAV, D.K., PANDEY, S. et al. Synthesis and characterization of gold nanoparticles incorporated bentonite clay for electrocatalytic sensing of arsenic(III). J Chem Sci 128, 349–356 (2016). https://doi.org/10.1007/s12039-016-1039-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1039-7

Keywords

Navigation