Skip to main content
Log in

Modelling Gas Adsorption in Porous Solids: Roles of Surface Chemistry and Pore Architecture

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Modelling the adsorption of small molecule gases such as N2, CH4 and CO2 in porous solids can provide valuable insights for the development of next generation materials. Employing a grand canonical Monte Carlo simulation code developed in our group, the adsorption isotherms of CH4 and CO2 in many metal organic frameworks have been calculated and compared with experimental results. The isotherms computed within a force field approach are able to well reproduce the experimental data. Key functional groups in the solids which interact with gas molecules and the nature of their interactions have been identified. The most favorable interaction sites for CH4 and CO2 in the framework solids are located in the linkers which are directed towards the pores. The structure of a perfluorinated conjugated microporous polymer has been modelled and it is predicted to take up 10% more CO2 than its hydrogenated counterpart. In addition, the vibrational, orientational and diffusive properties of CO2 adsorbed in the solids have been examined using molecular dynamics simulations. Intermolecular modes of such adsorbed species exhibit a blue shift with increasing gas pressure.

The adsorption isotherms of CH4 and CO2 in many metal organic frameworks have been calculated using MCIN and compared with experimental results. The most favorable interaction sites for these gases in the framework solids have been observed to be located in the linkers that are directed towards the pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Düren T, Bae Y -S and Snurr R Q 2009 Chem. Soc. Rev. 38 1237

    Article  Google Scholar 

  2. Rowsell J L C, Millward A R, Park K S and Yaghi O M 2004 J. Am. Chem. Soc. 126 5666

    Article  CAS  Google Scholar 

  3. Getman R B, Miller J H, Wang K and Snurr R Q 2011 J. Phys. Chem. C 115 2066

    Article  CAS  Google Scholar 

  4. Kumar A V A, Jobic H and Bhatia S K 2006 J. Phys. Chem. B 110 16666

    Article  CAS  Google Scholar 

  5. Siriwardane R V, Shen M S and Fisher E P 2003 Energy Fuels 17 571

    Article  CAS  Google Scholar 

  6. Economides M J and Wood D A 2009 J. Nat. Gas Sci. Eng. 1 1

    Article  Google Scholar 

  7. Wang W, Ma C, Lin P, Sun L and Cooper A I 2013 Energy Environ. Sci. 6 105

    Article  CAS  Google Scholar 

  8. Prajwal B and Ayappa K 2014 Adsorption 20 769

    Article  CAS  Google Scholar 

  9. Arenillas A, Smith K, Drage T and Snape C 2005 Fuel 84 2204

    Article  CAS  Google Scholar 

  10. Haldar R, Narayan R, Pradeep R and Maji T K 2012 Indian J. Chem., Sec A 51A 1231

    CAS  Google Scholar 

  11. Myers A and Monson 2014 Adsorption 20 591

    Article  CAS  Google Scholar 

  12. Belmabkhout Y, Frére M and Weireld G D 2004 Meas. Sci. Technol. 15

  13. Nakashima M, Shimada S, Inagaki M and Centeno T 1995 Carbon 33 1301

    Article  CAS  Google Scholar 

  14. Bao Z, Yu L, Ren Q, Lu X and Deng S 2011 J. Colloid Interface Sci. 353 549

    Article  CAS  Google Scholar 

  15. Fischer M and Bell R G 2012 J. Phys. Chem. C 116 26449

    Article  CAS  Google Scholar 

  16. Liu Z, Horikawa T, Do D and Nicholson D 2012 J. Colloid Interface Sci. 368 474

    Article  CAS  Google Scholar 

  17. Torrisi A, Bell R G and Mellot-Draznieks 2010 Cryst. Growth Des. 10 2839

    Article  CAS  Google Scholar 

  18. Naumov S, Valiullin R, Kaürger J and Monson P 2009 Phys. Rev. E 80 031607

    Article  Google Scholar 

  19. Mowat J P S, Seymour V R, Griffin J M, Thompson S P, Slawin A M Z, Fairen-Jimenez D, Düren T, Ashbrook S E and Wright P A 2012 Dalton Trans. 41 3937

    Article  CAS  Google Scholar 

  20. Chen L, Grajciar L, Nachtigall P and Düren T 2011 J. Phys. Chem. C 115 23074

    Article  CAS  Google Scholar 

  21. Kanoo P, Reddy S K, Kumari G, Haldar R, Narayana C, Balasubramanian S and Maji T K 2012 Chem. Commun. 48 8487

    Article  CAS  Google Scholar 

  22. Yang Q, Liu D, Zhong C and Li J R 2013 Chem. Rev. 113 8261

    Article  CAS  Google Scholar 

  23. Purton C J and Parker S 2013 Mol. Simul. 39 1240

    Article  CAS  Google Scholar 

  24. Dubbeldam D, Torres-Knoop A and Walton K S 2013 Mol. Simul. 39 1253

    Article  CAS  Google Scholar 

  25. Nicholson D and Parsonage N G 1982 In Computer simulation and the statistical mechanics of adsorption (Academic Press: London)

  26. Esselink K, Loyens L D J C and Smit B 1995 Phys. Rev. E 51 1560

    Article  CAS  Google Scholar 

  27. Bates S P, Van Well W J M, Van Santen R A and Smit B 1997 Mol. Simul. 19 301

    Article  CAS  Google Scholar 

  28. Smit B and Krishna R 2001 Curr. Opin. Solid State Mater. Sci. 5 455

    Article  CAS  Google Scholar 

  29. Kim J and Smit B 2012 J. Chem. Theory Comput. 8 2336

    Article  CAS  Google Scholar 

  30. Snurr R Q, Bell A T and Theodorou D N 1993 J. Phys. Chem. 97 13742

    Article  CAS  Google Scholar 

  31. Severson B L and Snurr R Q 2007 J. Chem. Phys. 126 134701

  32. Kowalczyk P, Tanaka H, Kaneko K, Terzyk A P and Do D D 2005 Langmuir 21 5639

    Article  CAS  Google Scholar 

  33. Rahimi M, Singh J K, Babu D J, Schneider J J and Müller-Plathe F 2013 J. Phys. Chem. C 117 13492

    Article  CAS  Google Scholar 

  34. Liu J C and Monson P A 2006 Ind. Eng. Chem. Res. 45 5649

    Article  CAS  Google Scholar 

  35. Malani A and Ayappa K G 2009 J. Phys. Chem. B 113 1058

    Article  CAS  Google Scholar 

  36. Channon Y M, Catlow C R A, Gorman A M and Jackson R A 1998 J. Phys. Chem. B 102 4045

    Article  CAS  Google Scholar 

  37. Martin M G 2013 Mol. Simul. 39 1212

    Article  CAS  Google Scholar 

  38. Kofke D A and Mihalick B C 2002 Fluid Phase Equilib. 194–197 327

    Article  Google Scholar 

  39. Jorgensen W L and Tirado-Rives J 2005 J. Comput. Chem. 26 1689

    Article  CAS  Google Scholar 

  40. Gupta A, Chempath S, Sanborn M J, Clark L A and Snurr R Q 2003 Mol. Simul. 29 29

    Article  CAS  Google Scholar 

  41. Yang C, Kaipa U, Mather Q Z, Wang X, Nesterov V, Venero A F and Omary M A 2011 J. Am. Chem. Soc. 133 18094

    Article  CAS  Google Scholar 

  42. Lin X, Blake A, Wilson J C, Sun X Z, Champness N R, George M W, Hubberstey P, Mokaya R and Schröder M 2006 J. Am. Chem. Soc. 128 10745

    Article  CAS  Google Scholar 

  43. Nijem N, Canepa P, Kaipa U, Tan K, Roodenko K, Tekarli S, Halbert J, Oswald I W H, Arvapally R K, Yang C, Thon- hauser T, Omary M A and Chabal Y J 2013 J. Am. Chem. Soc. 135 1261

    Article  Google Scholar 

  44. Rappe A K, Casewit C J, Colwell K S, Goddard W A and Skiff W M 1992 J. Am. Chem. Soc. 114 10024

    Article  CAS  Google Scholar 

  45. Martin M G and Siepmann J I 1998 J. Phys. Chem. B 102 2569

    Article  CAS  Google Scholar 

  46. Leong C F, Faust T B, Turner P, Usov P M, Kepert C J, Babarao R, Thornton A W and D’Alessandro D M 2013 Dalton Trans. 42 9831

    Article  CAS  Google Scholar 

  47. Potoff J J and Siepmann J I 2001 AIChE J. 47 1676

    Article  CAS  Google Scholar 

  48. Mayo S L, Olafson B D and Goddard W A 1990 J. Phys. Chem. 94 8897

    Article  CAS  Google Scholar 

  49. Barnes C 2006 In ThermoSolver: An Integrated Educational Thermodynamics Software Program. H.B.S. thesis (Oregon State University Library, Special Collections: Oregon, USA) p. 12

  50. Suresh V M, Bonakala S, Roy S, Balasubramanian S and Maji T K 2014 J. Phys. Chem. C 118 24369

    Article  CAS  Google Scholar 

  51. Greathouse J A, Kinnibrugh T L and Allendorf M D 2009 Ind. Eng. Chem. Res. 48 3425

    Article  CAS  Google Scholar 

  52. Skoulidas A I and Sholl D S 2005 J. Phys. Chem. B 109 15760

    Article  CAS  Google Scholar 

  53. Wongsinlatam W and Remsungnen T 2013 J. Chem. 2013 1

    Article  Google Scholar 

  54. Ghoufi A and Maurin G 2010 J. Phys. Chem. C 114 6496

    Article  CAS  Google Scholar 

  55. Krokidas P, Skouras E, Nikolakis V and Burganos V 2008 Mol. Simul. 34 1299

    Article  CAS  Google Scholar 

  56. Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graph 14 33

    Article  CAS  Google Scholar 

  57. Walton K S, Millward A R, Dubbeldam D, Frost H, Low J J, Yaghi O M and Snurr R Q 2008 J. Am. Chem. Soc. 130 406

    Article  CAS  Google Scholar 

  58. Mehio N, Dai S and Jiang D E 2014 J. Phys. Chem. A 118 1150

    Article  CAS  Google Scholar 

  59. Derewenda Z S, Lee L and Derewenda U 1995 J. Mol. Biol. 252 248

    Article  CAS  Google Scholar 

  60. Gautham R D and Thomas S 2001 In The Weak Hydrogen Bond: In Structural Chemistry and Biology (Oxford University Press: London)

  61. Hunter C A and Sanders J K M 1990 J. Am. Chem. Soc. 112 5525

    Article  CAS  Google Scholar 

  62. Baburin I A, Blatov V A, Carlucci L, Ciani G and Proserpio D M 2008 Cryst. Eng. Comm. 10 1822

    Article  CAS  Google Scholar 

  63. Suraweera N S, Albert J R, Barnes C E and Keffer D J 2014 Int. J. Hydrogen Energy 39 9241

    Article  CAS  Google Scholar 

  64. Düren T, Sarkisov L and Snurr R Q 2007 Research section calculating the accessible surface area for non-orthorhombic unit cells (http://people.bath. ac.uk/td222/research/surface_area/non_ortho/index.html)

  65. Budd P M, Ghanem B S, Makhseed S, McKeown N B, Msayib K J and Tattershall C E 2004 Chem. Commun. 230

  66. Jiang J -X, Su F, Trewin A, Wood C D, Niu H, Jones J T A, Khimyak Y Z and Cooper A I 2008 J. Am. Chem. Soc. 130 7710

    Article  CAS  Google Scholar 

  67. Wu P, Wang J, He C, Zhang X, Wang Y, Liu T and Duan C 2012 Adv. Funct. Mater. 22 1698

    Article  CAS  Google Scholar 

  68. Jiang J -X, Trewin A, Su F, Wood C D, Niu H, Jones J T A, Khimyak Y Z and Cooper A I 2009 Macromolecules 42 2658

    Article  CAS  Google Scholar 

  69. Macrae C F, Edgington P R, McCabe P, Pidcock E, Shields G P, Taylor R, Towler M and van de Streek J 2006 J. Appl. Crystallogr. 39 453

    Article  CAS  Google Scholar 

  70. Allen P and Tildesley D 1987 In Computer simulation of liquids (Oxford science publications, Clarendon Press: New York)

  71. Frenkel D and Smit B 2001 In Understanding Molecular Simulation: From Algorithms to Applications 2nd Edition (Academic Press: London)

  72. Dubbeldam D, Frost H, Walton K S and Snurr R Q 2007 Fluid Phase Equilib. 261 152

    Article  CAS  Google Scholar 

  73. Queen W L, Bloch E D, Brown C M, Hudson M R, Mason J A, Murray L J, Ramirez-Cuesta A J, Peterson V K and Long J R 2012 Dalton Trans. 41 4180

    Article  CAS  Google Scholar 

  74. Wu H, Simmons J M, Srinivas G, Zhou W and Yildirim T 2010 J. Phys. Chem. Lett. 1 1946

    Article  CAS  Google Scholar 

  75. Daturi M 2012 Curr. Phys. Chem. 2 178

    Article  CAS  Google Scholar 

  76. Vaidhyanathan R, Iremonger S S, Shimizu G K H, Boyd P G, Alavi S and Woo T K 2012 Angew. Chem., Int. Ed. 51 1826

    Article  CAS  Google Scholar 

  77. Kitagawa S and Matsuda R 2007 Coord. Chem. Rev. 251 2490

    Article  CAS  Google Scholar 

  78. Das C K and Singh J K 2013 J. Chem. Phys. 139 174706

    Article  Google Scholar 

  79. Liu Z, Do D and Nicholson D 2011 J. Colloid Interface Sci. 361 278

    Article  CAS  Google Scholar 

  80. Page K and Monson P 1996 Phys. Rev. E 54 6557

    Article  CAS  Google Scholar 

  81. Malani A, Ayappa K G and Murad S 2009 J. Phys. Chem. B 113 13825

    Article  CAS  Google Scholar 

  82. Kamakshi J and Ayappa K G 2001 Langmuir 17 5245

    Article  CAS  Google Scholar 

  83. Ayappa K G and Ghatak C 2002 J. Chem. Phys. 117 5373

    Article  CAS  Google Scholar 

  84. Malani A and Ayappa K G 2012 Mol. Simul. 38 1114

    Article  CAS  Google Scholar 

  85. Saharay M and Balasubramanian S 2007 J. Phys. Chem. B 111 387

    Article  CAS  Google Scholar 

  86. Plimpton S 1995 J. Comput. Phys. 117 1

    Article  CAS  Google Scholar 

  87. Harris J G and Yung K H 1995 J. Phys. Chem. 99 12021

    Article  CAS  Google Scholar 

  88. Fujita M, Oguro D, Miyazawa M, Oka H, Yamaguchi K and Ken-taro Ogura 1995 Nature 378 469

    Article  CAS  Google Scholar 

  89. Mera H A, Gomez-Ballesteros J L and Balbuena P B 2014 J. Chem. Eng. Data 59 2973

    Article  CAS  Google Scholar 

  90. Eslami H, Kesik M, Karimi-Varzaneh H A and Müller-Plathe F 2013 J. Chem. Phys. 139 124902

    Article  Google Scholar 

  91. Bhatia S K and Myers A L 2006 Langmuir 22 1688

    Article  CAS  Google Scholar 

  92. Plant D F, Maurin G and Bell R G 2007 J. Phys. Chem. B 111 2836

    Article  CAS  Google Scholar 

  93. Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, O’Keeffe M and Yaghi O M 2003 Science 300 1127

    Article  CAS  Google Scholar 

  94. Queen W L, Hudson M R, Bloch E D, Mason J A, Gonzalez M I, Lee J S, Gygi D, Howe J D, Lee K, Darwish T A, James M, Peterson V K, Teat S J, Smit B, Neaton J B, Long J R and Brown C M 2014 Chem. Sci. 5 4569

    Article  CAS  Google Scholar 

  95. Ogilvie S H, Duyker S G, Southon P D, Peterson V K and Kepert C J 2013 Chem. Commun. 49 9404

    Article  CAS  Google Scholar 

  96. MCIN is available for academic users on request by email to the Corresponding Author

Download references

Acknowledgements

We thank DST for support. The first author acknowledges CSIR for a research fellowship. The second author acknowledges SSL for a Senior Fellowship. We thank Prof. Tapas Kumar Maji and his research group at JNCASR for many insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SUNDARAM BALASUBRAMANIAN.

Additional information

Supplementary Information

The Supplementary Information associated with this article has sections containing the development of MCIN code and applications of MCIN: validation of MCIN by reproducing simulated and experimental adsorption isotherms, modelling CO2 adsorption in TPE-FCMP, comparison of pair correlation functions of CO2 with respect to MOF sites obtained from MCIN and LAMMPS, vibrational density of states of CO2 in IRMOF-1 and CO2 diffusion in IRMOF-1 and TPE-FCMP at various pressures, comparison of pair correlation functions of adsorbed CO2 with bulk CO2, comparison pair correlation functions of CH4 in FMOF-1 and [Zn2(L)]\(_{\mathrm {\infty } }\) at various pressures and running coordination number of CO2 around carboxylate group of IRMOF-1. The Supplementary Information for this article is available at http://www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 11.5 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BONAKALA, S., BALASUBRAMANIAN, S. Modelling Gas Adsorption in Porous Solids: Roles of Surface Chemistry and Pore Architecture. J Chem Sci 127, 1687–1699 (2015). https://doi.org/10.1007/s12039-015-0939-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-0939-2

Keywords

Navigation