Skip to main content

Advertisement

Log in

Evaluating methane storage targets: from powder samples to onboard storage systems

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The development of a viable adsorbed natural gas onboard fuel system involves synthesizing materials that meet specific storage target requirements. We assess the impact on natural gas storage due to intermediate processes involved in taking a laboratory powder sample to an onboard packed or adsorbent bed module. We illustrate that reporting the V/V (volume of gas/volume of container) capacities based on powder adsorption data without accounting for losses due to pelletization and bed porosity, grossly overestimates the working storage capacity for a given material. Using data typically found for adsorbent materials that are carbon and MOF based materials, we show that in order to meet the Department of Energy targets of 180 V/V (equivalent STP) loading at 3.5 MPa and 298 K at the onboard packed bed level, the volumetric capacity of the pelletized sample should be at least 245 V/V and the corresponding gravimetric loading varies from 0.175 to 0.38 kg/kg for pellet densities ranging from 461.5 to 1,000 \(\hbox {kg m}^{-3}\). With recent revision of the DOE target to 263 V/V at the onboard packed bed level, the volumetric loadings for the pelletized sample should be about 373 V/V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Balathanigaimani, M.S., Lee, M.J., Shim, W.G., Lee, J.W., Moon, H.: Charge and discharge of methane on phenol-based carbon monolith. Adsorption 14(4–5), 525–532 (2008)

    Article  CAS  Google Scholar 

  • Bastos-Neto, M., Torres, A.E.B., Azevedo, D.C.S., Cavalcante Jr, C.L.: A theoretical and experimental study of charge and discharge cycles in a storage vessel for adsorbed natural gas. Adsorption 11(2), 147–157 (2005)

    Article  CAS  Google Scholar 

  • Basumatary, R., Dutta, P., Prasad, M., Srinivasan, K.: Thermal modeling of activated carbon based adsorptive natural gas storage system. Carbon 43(3), 541–549 (2005)

    Article  CAS  Google Scholar 

  • Biloé, S., Goetz, V., Guillot, A.: Optimal design of an activated carbon for an adsorbed natural gas storage system. Carbon 40(8), 1295–1308 (2002)

    Article  Google Scholar 

  • Burchell, T., Rogers, M.: Low pressure storage of natural gas for vehicular applications. SAE Tech. Pap. Ser. 1, 2000–2205 (2000)

    Google Scholar 

  • Celzard, A., Albiniak, A., Jasienko-Halat, M., Marêché, J.F., Furdin, G.: Methane storage capacities and pore textures of active carbons undergoing mechanical densification. Carbon 43(9), 1990–1999 (2005)

    Article  CAS  Google Scholar 

  • Dubinin, M.M., Astakhov, V.A.: Description of adsorption equilibrium of vapours on zeolites over wide ranges of temperature and pressure. Adv. Chem. Ser. 102, 69 (1971)

    Article  CAS  Google Scholar 

  • Farha, O.K., Eryazici, I., Jeong, N.C., Hauser, B.G., Wilmer, C.E., Sarjeant, A.A., Snurr, R.Q., Nguyen, S.T., Yazaydın, A.O., Hupp, J.T.: Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit? J. Am. Chem. Soc. 134(36), 15,016–15,021 (2012)

    Article  CAS  Google Scholar 

  • Finsy, V., Ma, L., Alaerts, L., Vos, D.E.D., Baron, G.V., Denayer, J.F.M.: Separation of \({\rm CO }_2/{\rm CH }_4\) mixtures with the MIL-53(Al) metal-organic framework. Microporous Mesoporous Mater. 120(3), 221–227 (2009)

    Article  CAS  Google Scholar 

  • Goetz, V., Biloé, S.: Efficient dynamic charge and discharge of an adsorbed natural gas storage system. Chem. Eng. Commun. 192(7), 876–896 (2005)

    Article  CAS  Google Scholar 

  • Guan, C., Loo, L.S., Wang, K., Yang, C.: Methane storage in carbon pellets prepared via a binderless method. Energy Convers. Manage 52(2), 1258–1262 (2011)

    Article  CAS  Google Scholar 

  • Hou, P.X., Orikasa, H., Itoi, H., Nishihara, H., Kyotani, T.: Densification of ordered microporous carbons and controlling their micropore size by hot-pressing. Carbon 45(10), 2011–2016 (2007)

    Article  CAS  Google Scholar 

  • Inomata, K., Kanazawa, K., Urabe, Y., Hosono, H., Araki, T.: Natural gas storage in activated carbon pellets without a binder. Carbon 40(1), 87–93 (2002)

    Article  CAS  Google Scholar 

  • Jordá-Beneyto, M., Lozano-Castelló, D., Suárez-García, F., Cazorla-Amorós, D., Linares-Solano, Á.: Advanced activated carbon monoliths and activated carbons for hydrogen storage. Microporous Mesoporous Mater. 112(1), 235–242 (2008)

    Article  Google Scholar 

  • Konstas, K., Osl, T., Yang, Y., Batten, M., Burke, N., Hill, A.J., Hill, M.R.: Methane storage in metal organic frameworks. J. Mater. Chem. 22(33), 16,698–16,708 (2012)

    Article  CAS  Google Scholar 

  • Kumar, V.S., Raghunathan, K., Kumar, S.: A lumped-parameter model for cryo-adsorber hydrogen storage tank. Int. J. Hydrogen Energy 34(13), 5466–5475 (2009)

    Article  Google Scholar 

  • Liu, J., Tian, J., Thallapally, P.K., McGrail, B.P.: Selective \({\rm CO}_2\) capture from flue gas using metal-organic frameworks-a fixed bed study. J. Phys. Chem. C 116(17), 9575–9581 (2012)

    Article  CAS  Google Scholar 

  • Loh, W.S., Rahman, K.A., Chakraborty, A., Saha, B.B., Choo, Y.S., Khoo, B.C., Ng, K.C.: Improved isotherm data for adsorption of methane on activated carbons. J. Chem. Eng. Data 55(8), 2840–2847 (2010)

    Article  CAS  Google Scholar 

  • Lozano-Castelló, D., Cazorla-Amorós, D., Linares-Solano, A., Quinn, D.F.: Activated carbon monoliths for methane storage: influence of binder. Carbon 40(15), 2817–2825 (2002)

    Article  Google Scholar 

  • Lozano-Castelló, D., Alcañiz Monge, J., De la Casa-Lillo, M.A., Cazorla-Amorós, D., Linares-Solano, A.: Advances in the study of methane storage in porous carbonaceous materials. Fuel 81(14), 1777–1803 (2002)

    Article  Google Scholar 

  • Makal, T.A., Li, J.R., Lu, W., Zhou, H.C.: Methane storage in advanced porous materials. Chem. Soc. Rev. 41, 7761–7779 (2012)

    Article  CAS  Google Scholar 

  • Mason, J.A., Veenstra, M., Long, J.R.: Evaluating metal-organic frameworks for natural gas storage. Chem. Sci. 5(1), 32–51 (2014)

    Article  CAS  Google Scholar 

  • Matranga, K.R., Myers, A.L., Glandt, E.D.: Storage of natural gas by adsorption on activated carbon. Chem. Eng. Sci. 47(7), 1569–1579 (1992)

    Article  CAS  Google Scholar 

  • Momen, G., Hermosilla, G., Michau, A., Pons, M., Firdaous, M., Marty, P., Hassouni, K.: Experimental and numerical investigation of the thermal effects during hydrogen charging in packed bed storage tank. Int. J. Heat Mass Transfer. 52(5), 1495–1503 (2009)

    Article  CAS  Google Scholar 

  • Mota, J.P.B., Rodrigues, A.E., Saatdjian, E., Tondeur, D.: Dynamics of natural gas adsorption storage systems employing activated carbon. Carbon 35(9), 1259–1270 (1997)

    Article  CAS  Google Scholar 

  • Peng, Y., Krungleviciute, V., Eryazici, I., Hupp, J.T., Farha, O.K., Yildirim, T.: Methane storage in metal-organic frameworks: current records, surprise findings, and challenges. J. Am. Chem. Soc. 135(32), 11,887–11,894 (2013)

    Article  CAS  Google Scholar 

  • Purewal, J., Liu, D., Sudik, A., Veenstra, M., Yang, J., Maurer, S., Müller, U., Siegel, D.J.: Improved hydrogen storage and thermal conductivity in high-density MOF-5 composites. J. Phys. Chem. C 116(38), 20,199–20,212 (2012)

    Article  CAS  Google Scholar 

  • Rahman, K.A., Loh, W.S., Chakraborty, A., Saha, B.B., Chun, W.G., Ng, K.C.: Thermal enhancement of charge and discharge cycles for adsorbed natural gas storage. Appl. Therm. Eng. 31(10), 1630–1639 (2011)

    Article  CAS  Google Scholar 

  • Sahoo, P.K., John, M., Newalkar, B.L., Choudhary, N.V., Ayappa, K.G.: Filling characteristics for an activated carbon based adsorbed natural gas storage system. Ind. Eng. Chem. Res. 50(23), 13,000–13,011 (2011)

    Article  CAS  Google Scholar 

  • Sahoo, P.K., John, M., Newalkar, B.L., Choudhary, N.V., Ayappa, K.G.: Corrections to filling characteristics for an activated carbon based adsorbed natural gas storage system. Ind. Eng. Chem. Res. 53(11), 4522–4523 (2014a)

    Article  CAS  Google Scholar 

  • Sahoo, P.K., Prajwal, B.P., Dasetty, S.K., John, M., Newalkar, B.L., Choudary, N.V., Ayappa, K.G.: Influence of exhaust gas heating and L/D ratios on the discharge efficiencies for an activated carbon natural gas storage system. Appl. Energy 119, 190–203 (2014b)

    Article  CAS  Google Scholar 

  • Stoeckli, F., Guillot, A., Hugi-Cleary, D., Slasli, A.M.: Pore size distributions of active carbons assessed by different techniques. Carbon 38, 938–941 (2000)

    Article  Google Scholar 

  • Sun, Y., Liu, C., Su, W., Zhou, Y., Zhou, L.: Principles of methane adsorption and natural gas storage. Adsorption 15(2), 133–137 (2009)

    Article  CAS  Google Scholar 

  • Tagliabue, M., Rizzo, C., Millini, R., Dietzel, P.D.C., Blom, R., Zanardi, S.: Methane storage on CPO-27-Ni pellets. J. Porous Mater. 18(3), 289–296 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was carried out under the Thematic Unit of Excellence on Computational Materials Science (TUECMS) Nanomission program, supported by the Department of Science and Technology (DST) India. BPP is grateful to TUECMS for financial support. BPP is also grateful to S. J Jaju for assisting with the graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Ayappa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajwal, B.P., Ayappa, K.G. Evaluating methane storage targets: from powder samples to onboard storage systems. Adsorption 20, 769–776 (2014). https://doi.org/10.1007/s10450-014-9620-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-014-9620-1

Keywords

Navigation