Skip to main content

Advertisement

Log in

Pressure-induced changes in the structural and absorption properties of crystalline 5-nitramino-3,4-dinitropyrazole

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Periodic density functional theory with dispersion correction (DFT-D) was used to study the structural, electronic, and absorption properties of crystalline 5-nitramino-3, 4-dinitropyrazole (NADNP) under hydrostatic compression of 0-140 GPa. The results indicate that the PBE-G06 is the best functional for studying NADNP. As the pressure increases, the lattice of parameters, band gap, density of states and absorption spectra change regularly except for 126 GPa, where NADNP begins to decompose and form a new bond. An analysis of the band gap and density of states indicates that NADNP becomes more and more sensitive under compression. The absorption spectra show that NADNP has relatively high optical activity with increasing pressure.

The compression ratios of the relaxed lattice constants (a, b, c) of 5-nitramino-3,4-dinitropyrazole gradually increase in the pressure range of 0-140 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Yin P, Parrish D A and Shreeve J M 2015 J. Am. Chem. Soc. 137 4778

    Article  CAS  Google Scholar 

  2. Zhu W H, Wei T, Zhang X W and Xiao H M 2009 J. Mol. Struct.: Theochem. 895 131

    Article  CAS  Google Scholar 

  3. Qiu L, Xiao H M, Ju X H and Gong X D 2005 Int. J. Quantum Chem. 1 48

    Article  Google Scholar 

  4. Zhu W H and Xiao H M 2007 J. Solid. State Chem. 180 3521

    Article  CAS  Google Scholar 

  5. Zhu W H, Xiao J J and Xiao H M 2006 Chem. Phys. Lett. 422 117

    Article  CAS  Google Scholar 

  6. Zhu W H, Xiao J J and Xiao H M 2006 J. Phys. Chem. B 110 9856

    Article  CAS  Google Scholar 

  7. Peiris S M, Wong C P and Zerilli F J 2004 J. Chem. Phys. 120 8060

    Article  CAS  Google Scholar 

  8. Zhu W H, Zhang X W, Zhu W and Xiao H M 2008 Phys. Chem. Chem. Phys. 10 7318

    Article  CAS  Google Scholar 

  9. Zhu W H, Zhang X W, Zhu W H and Xiao H M 2009 Theor. Chem. Acc. 124 179

    Article  CAS  Google Scholar 

  10. Zhu W H and Xiao H M 2010 Struct. Chem. 21 657

    Article  CAS  Google Scholar 

  11. Wu Q, Zhu W H and Xiao H M 2013 J. Phys. Chem. C 117 16830

    Article  CAS  Google Scholar 

  12. Zhu W H and Xiao H M 2008 J. Comput. Chem. 29 176

    Article  CAS  Google Scholar 

  13. Xiao H M and Ju X H 2004 Int. J. Quantum Chem. 121 12523

    CAS  Google Scholar 

  14. Fabbiani F P A and Pulham C R 2006 Chem. Soc. Rev. 35 932

    Article  CAS  Google Scholar 

  15. Zhu W H, Xiao J J, Ji G F, Zhao F and Xiao H M 2007 J. Phys. Chem. B 111 12715

    Article  CAS  Google Scholar 

  16. Segall M D, Lindan P J D, Prober M J T, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys: Condens. Matter 14 2717

    CAS  Google Scholar 

  17. Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    Article  CAS  Google Scholar 

  18. Vanderbilt D 1990 Phys. Rev. B 41 7892

    Article  Google Scholar 

  19. Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048

    Article  CAS  Google Scholar 

  20. Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Article  CAS  Google Scholar 

  21. Perdew J P and Wang Y 1992 Phys. Rev. B 45 12947

    Article  Google Scholar 

  22. Grimme S 2006 J. Comput. Chem. 27 1787

    Article  CAS  Google Scholar 

  23. Tkatchenko A and Scheffler M 2009 Phys. Rev. Lett. 102 073005

    Article  Google Scholar 

  24. Ortmann F, Bechstedt F and Schmidt W G 2006 Phys. Rev. B 73 205101

    Article  Google Scholar 

  25. Appalakondaiah S, Vaitheeswaran G and Lebègue S 2014 Chem. Phys. Lett. 605–606 10

    Article  Google Scholar 

  26. Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169

    Article  CAS  Google Scholar 

  27. Fletcher R 1980 In Practical Methods of Optimization (New York: Wiley)

  28. Saha S, Sinha T P and Mookerjee A 2000 Phys. Rev. B 62 8828

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21273115) and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WEIHUA ZHU.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

XIANG, D., WU, Q., LIU, Z. et al. Pressure-induced changes in the structural and absorption properties of crystalline 5-nitramino-3,4-dinitropyrazole. J Chem Sci 127, 1777–1784 (2015). https://doi.org/10.1007/s12039-015-0938-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-0938-3

Keywords

Navigation