Skip to main content

Advertisement

Log in

DFT studies of pressure effects on structural and vibrational properties of crystalline octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A detailed study of the structural, electronic, and vibrational properties of crystalline octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) under hydrostatic pressure of 0–100 GPa was performed with density functional theory (DFT). The results show that the compressibility of HMX crystal is anisotropic. With the increasing pressure, the lattice constants and cell volumes calculated by local density approximation (LDA) gradually approach these by the PW91 functional of generalized gradient approximation (GGA). The band gap reduction is more pronounced in the low-pressure range compared to the high-pressure region. The band gaps calculated by LDA and GGA pseudopotential plane-wave reproduce the trend of pressure-induced variation of band gap by all electron calculations. The calculated pressure-induced frequency shifts indicate that the pressure produces a more significant influence on the ring deformation and stretching vibrations than on other modes. The vibrational modes associated with the motions of the CH2 and NO2 side groups are quite sensitive to pressure. The mixing between different vibrational modes becomes stronger under compression. Our results also show that DFT can well describe the intermolecular interactions in HMX under high pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cooper PW, Kurowski SR (1996) Introduction to the technology of explosives. Wiley, New York

    Google Scholar 

  2. Akhaven J (1998) The chemistry of explosives. Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  3. Yoo C-S, Cynn H (1999) J Chem Phys 111:10229

    Article  CAS  Google Scholar 

  4. Sorescu DC, Rice BM, Thompson DL (1999) J Phys Chem B 103:6783

    Article  CAS  Google Scholar 

  5. Bedrov D, Smith GD, Sewell TD (2000) J Chem Phys 112:7203

    Article  CAS  Google Scholar 

  6. Lewis JP, Sewell TD, Evans RB, Voth GA (2000) J Phys Chem B 104:1009

    Article  CAS  Google Scholar 

  7. Brand HV, Rabie RL, Funk DJ, Diaz-Acosta I, Pulay P, Lippert TK (2002) J Phys Chem B 106:10594

    Article  CAS  Google Scholar 

  8. Henson BF, Smilowitz L, Asay BW, Dickson PM (2002) J Chem Phys 117:3780

    Article  CAS  Google Scholar 

  9. Smilowitz L, Henson BF, Asay BW, Dickson PM (2002) J Chem Phys 117:3789

    Article  CAS  Google Scholar 

  10. Manaa MR, Fried LE, Melius CF, Elstner M, Frauenheim Th (2002) J Phys Chem A 106:9024

    Article  CAS  Google Scholar 

  11. Lewis JP (2003) Chem Phys Lett 371:588

    Article  CAS  Google Scholar 

  12. Hare DE, Forbes JW, Reisman DB, Dick JJ (2004) Appl Phys Lett 85:949

    Article  CAS  Google Scholar 

  13. Stevens LL, Eckhardt CJ (2005) J Chem Phys 122:174701

    Article  Google Scholar 

  14. Gump JC, Peiris SM (2005) J Appl Phys 97:053513

    Article  Google Scholar 

  15. Hooks DE, Hayes DB, Hare DE, Reisman DB, Vandersall KS, Forbesa JW, Hall CA (2006) J Appl Phys 99:124901

    Article  Google Scholar 

  16. Ye S, Koshi M (2006) J Phys Chem B 110:18515

    Article  CAS  Google Scholar 

  17. Zerilli FJ, Kuklja MM (2006) J Phys Chem A 110:5173

    Article  CAS  Google Scholar 

  18. Byrd EFC, Rice BM (2007) J Phys Chem C 111:2787

    Article  CAS  Google Scholar 

  19. Zhu WH, Xiao JJ, Ji GF, Zhao F, Xiao HM (2007) J Phys Chem B 111:12715

    Article  CAS  Google Scholar 

  20. Lian D, Lu L-Y, Wei D-Q, Zhang Q-M, Gong Z-Z, Guo Y-X (2008) Chin Phys Lett 25:899

    Article  CAS  Google Scholar 

  21. Conroy MW, Oleynik II, Zybin SV, White CT (2008) J Appl Phys 104:053506

    Article  Google Scholar 

  22. Dlott DD, Fayer MD (1990) J Chem Phys 92:3798

    Article  CAS  Google Scholar 

  23. Tokmanoff A, Fayer MD, Dlott DD (1993) J Phys Chem 97:1901

    Article  Google Scholar 

  24. Tarver CM (1997) J Phys Chem A 101:4845

    Article  CAS  Google Scholar 

  25. Olinger BW, Roof B, Cady HH (1978) In: Symposium on high dynamic pressures. Commissariat al’ Energie Atomique, Saclay, France, pp 3–8

  26. Reisman DB, Forbes JW, Tarver CM, Garcia F, Hayes DB, Furnish MD, Dick JJ (2002) In: Proceedings of the 12th international detonation symposium. Office of Naval Research, Arlington, VA

  27. Dick JJ, Hooks DE, Menikoff R, Martinez AR (2004) J Appl Phys 96:374

    Article  CAS  Google Scholar 

  28. Baer MR, Hall CA, Gustavsen RL, Hooks DE, Sheffield SA (2007) J Appl Phys 101:034906

    Article  Google Scholar 

  29. Reed EJ, Joannopoulos JD, Fried LE (2000) Phys Rev B 62:16500

    Article  CAS  Google Scholar 

  30. Byrd EFC, Scuseria GE, Chabalowski CF (2004) J Phys Chem B 108:13100

    Article  CAS  Google Scholar 

  31. Liu H, Zhao J, Wei D, Gong Z (2006) J Chem Phys 124:124501

    Article  Google Scholar 

  32. Brand HV (2006) J Phys Chem B 110:10651

    Article  Google Scholar 

  33. Xu X-J, Zhu W-H, Xiao H-M (2007) J Phys Chem B 111:2090

    Article  CAS  Google Scholar 

  34. Zhu WH, Xiao HM (2007) J Solid State Chem 180:3521

    Article  CAS  Google Scholar 

  35. Zerilli FJ, Hooper JP, Kuklja MM (2007) J Chem Phys 124:114701

    Article  Google Scholar 

  36. Zerilli FJ, Kuklja MM (2007) J Phys Chem A 111:1721

    Article  CAS  Google Scholar 

  37. Miao MS, Dreger ZA, Winey JM, Gupta YM (2008) J Phys Chem A 112:12228

    Article  CAS  Google Scholar 

  38. Zhu WH, Zhang XW, Zhu W, Xiao HM (2008) Phys Chem Chem Phys 10:7318

    Article  CAS  Google Scholar 

  39. Liu H, Zhao J (2008) Comput Mater Sci 42:698

    Article  Google Scholar 

  40. Liu H, Zhao J, Du J, Gong Z, Ji G, Wei D (2007) Phys Lett A 367:383

    Article  CAS  Google Scholar 

  41. Vanderbilt D (1990) Phys Rev B 41:7892

    Article  Google Scholar 

  42. Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD (1992) Rev Mod Phys 64:1045

    Article  CAS  Google Scholar 

  43. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  44. Fischer TH, Almlof J (1992) J Phys Chem 96:9768

    Article  CAS  Google Scholar 

  45. Ceperley DM, Alder BJ (1980) Phys Rev Lett 45:566

    Article  CAS  Google Scholar 

  46. Perdew JP, Zunger A (1981) Phys Rev B 23:5048

    Article  CAS  Google Scholar 

  47. Choi CS, Boutin HP (1970) Acta Crystallogr Sect B 26:1235

    Article  CAS  Google Scholar 

  48. Gonze X (1997) Phys Rev B 55:10337

    Article  CAS  Google Scholar 

  49. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  50. Murnaghan FD (1951) In: Finite deformation of an elastic solid. Dover Publications, New York, p 73

  51. Hummer K, Puschnig P, Ambrosch-Draxl C (2003) Phys Rev B 67:184105

    Article  Google Scholar 

  52. Meyer R, Köhler J, Homburg A (2002) Explosives. Wiley-VCH Verlag GmbH, Weinheim

    Book  Google Scholar 

  53. Kuklja MM, Kunz AB (1999) J Appl Phys 86:4428

    Article  CAS  Google Scholar 

  54. Younk EH, Kunz AB (1997) Int J Quantum Chem 63:615

    Article  CAS  Google Scholar 

  55. Delley B (1990) J Chem Phys 92:508

    Article  CAS  Google Scholar 

  56. Delley B (2000) J Chem Phys 113:7756

    Article  CAS  Google Scholar 

  57. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

    Article  Google Scholar 

  58. Gilman JJ (1995) Philos Mag B 71:1957

    Google Scholar 

  59. Xiao H-M, Li Y-F (1995) Sci China B 38:538

    CAS  Google Scholar 

  60. Xiao H-M, Li Y-F (1996) Banding and electronic structures of metal azides. Science Press, Beijing, p 88 (in Chinese)

    Google Scholar 

  61. Zhu WH, Xiao HM (2008) J Comput Chem 29:176

    Article  CAS  Google Scholar 

  62. Zhu WH, Zhang XW, Wei T, Xiao HM (2008) Chin J Chem 26:2145

    Article  CAS  Google Scholar 

  63. Zhu WH, Zhang XW, Wei T, Xiao HM (2009) J Mol Struct: Theochem 900:84

    Article  CAS  Google Scholar 

  64. Gilman JJ (1979) J Appl Phys 50:4059

    Article  CAS  Google Scholar 

  65. Gilman JJ (1998) Philos Mag Lett 77:79

    Article  CAS  Google Scholar 

  66. Gilman JJ (1993) Philos Mag B 67:207

    CAS  Google Scholar 

  67. Gilman JJ (1994) Mech Mater 17:83

    Article  Google Scholar 

  68. Kuklja MM, Stefanovich EV, Kunz AB (2000) J Chem Phys 112:3417

    Article  CAS  Google Scholar 

  69. Luty T, Ordon P, Eckhardt CJ (2002) J Chem Phys 117:1775

    Article  CAS  Google Scholar 

  70. Kuklja MM, Kunz AB (2000) J Appl Phys 87:2215

    Article  CAS  Google Scholar 

  71. Botcher TR, Landouceur HD, Russel TR (1998) In: Schmidt SC, Dandekar DP, Forbes JW (eds) Shock compression of condensed matter—1997, Proceedings of the APS Topical Group. AIP, Woodbury, New York

  72. Lewis JP, Glaesemann KR, VanOpdorp K, Voth GA (2000) J Phys Chem A 104:11384

    Article  CAS  Google Scholar 

  73. Kirin D, Volovsek V (1997) J Chem Phys 106:9505

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the NSAF Foundation of National Natural Science Foundation of China and China Academy of Engineering Physics (10876013), the Research Fund for the Doctoral Program of Higher Education, and the Project-sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weihua Zhu or Heming Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, W., Zhang, X., Wei, T. et al. DFT studies of pressure effects on structural and vibrational properties of crystalline octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. Theor Chem Acc 124, 179–186 (2009). https://doi.org/10.1007/s00214-009-0596-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0596-y

Keywords

Navigation