Skip to main content
Log in

Structural and vibrational spectral studies on hydrogen bonded salts: 4-chloroanilinium maleate and nitrate

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In the present study, proton transfer from nitric and maleic acids to amine group (4-chloroaniline) led to hydrogen bonded crystals of 4-chloroanilinium maleate (4CAM) and 4-chloroanilinium nitrate (4CAN) which are investigated by the experimental and theoretical approaches. The molecular structures of these two compounds were optimized with the Density Functional Theory (DFT) using B3LYP function and the Hartree-Fock (HF) level with a6-311 ++G(d,p) basis set. Geometrical parameters of the molecules were also analyzed along with their intermolecular hydrogen bond, which tailors the ions. These analyses show that present molecules are stabilized through the N–H ⋯O and O–H ⋯O hydrogen bonds. The vibrational modes were computed by quantum chemical methods. Further, these modes are investigated by FT-IR and FT-Raman spectroscopy in the range of 4000–400 cm−1. The optimized molecular geometry and computed vibrational spectra are compared with experimental results, which show significant agreement. The natural bond orbital (NBO) analysis was carried out to interpret hyperconjucative interaction and intramolecular charge transfer (ICT). This analysis gives the precise insight into the nature of H-bond interactions. The chemical hardness, electronegativity and chemical potential of the molecules were determined by HOMO–LUMO plot. The frontier molecular orbitals have small band gap value, which signify the possible biological/pharmaceutical activity of the compounds.

The proton transfer from the nitric and maleic acids to amine group (of 4-chloroaniline) lead to hydrogen bonded crystals of 4-chloroanilinium maleate (4CAM) and 4-chloroanilinium nitrate (4CAN). The molecular structures of these two compounds were optimized with the Density Functional Theory (DFT) and Hartree-Fock (HF) methods. Geometrical parameters of the molecules were analyzed along with their intermolecular hydrogen bond which tailors the ions. These analyses show that the molecular aggregations are stabilized through the N–H···O and O– H···O hydrogen bonds. The vibrational modes were computed by quantum chemical methods and further investigated by FT-IR and FT- Raman spectroscopy in the range of 4000–400 cm-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Scheme 1
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Deechongkit S, Nguyen H, Powers E T, Dawson P E, Gruebele M and Kelly J W 2004 Nature 430 101

    Article  CAS  Google Scholar 

  2. Lopez N, Vos T E, Arif A M, Shum W W, Noveron J S and Miller J S 2006 Inorg. Chem. 45 4325

    Article  CAS  Google Scholar 

  3. Senes A, Ubarretxena-Belandia I and Engelman D M 1998 Proc. Natl. Acad. Sci. USA p. 9056

  4. Parker L L, Houk A R and Jensen J H 2006 J. Am. Chem. Soc. 128 9863

    Article  CAS  Google Scholar 

  5. Aakeroy C B and Seddon K R 1993 Chem. Soc. Rev. 22 397

    Article  CAS  Google Scholar 

  6. Desiraju G R 1989 In Crystal Engineering: The Design of Organic Solids (Amsterdam: Elsevier)

  7. Harms K and Wocadlo S 1995 In XCAD4 (Germany: University of Marburg)

    Google Scholar 

  8. Sheldrick G M 2008 Acta Cryst. A 64 112

    Article  CAS  Google Scholar 

  9. Farrugia L J 1997 J. Appl. Cryst. 30 565

    Article  CAS  Google Scholar 

  10. Macrae C F, Edgington P R, McCabe P, Pidcock E, Shields G P, Taylor R, Towler M and Van de Streek J 2006 J. Appl. Cryst. 39 453

    Article  CAS  Google Scholar 

  11. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J and Fox D J 2013 Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT

  12. Schlegel H B 1982 J. Comput. Chem. 3 214

    Article  CAS  Google Scholar 

  13. Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864

    Article  Google Scholar 

  14. Becke A D 1993 J. Chem. Phys. 98 5648

    Article  CAS  Google Scholar 

  15. Dennington R, Keith T and Millam J 2009 J. Semichem Inc., Shawnee Mission KS

  16. Anitha R, Athimoolam S, Asath Bahadur S and Gunasekaran M 2012 Acta Cryst. E 68 o959

    Article  CAS  Google Scholar 

  17. Sidir I, Sidir Y G, Kumalar M and Tasal E 2010 J. Mol. Struct. 964 134

    Article  CAS  Google Scholar 

  18. Ploug-Sørensen G and Andersen E K 1983 Acta Cryst. C 39 112

    Article  Google Scholar 

  19. Kurt M, Yurdakul M and Yurdakul S 2004 J. Mol. Struct. (Theochem.) 711 25

    Article  CAS  Google Scholar 

  20. Krishnakumar V and John Xavier R 2005 Spectrochim. Acta Part A 61 253

    Article  CAS  Google Scholar 

  21. Socrates G 1980 In Infrared Characteristics Group Frequencies (New York: John Wiley)

  22. Lampert H, Mikenda W and Karpten A 1997 J. Phys. Chem. A 101 2254

    Article  CAS  Google Scholar 

  23. Banwell C N and Mccash E M 1995 In Fundamentals of Molecular Spectroscopy 4th ed. (New Delhi: Tata McGraw Hill)

  24. Dollish F R, Fateley W G and Bentley F F 1973 In Characteristic Raman Frequencies of Organic-Compounds (New York: Wiley)

  25. Rosenthal M R 1973 J. Chem. Educ. 50 331

    Article  CAS  Google Scholar 

  26. Reed A E, Curtis L A and Weinhold F A 1988 Chem. Rev. 88 899

    Article  CAS  Google Scholar 

  27. Szafran M, Komasa A and Adamska E B 2007 J. Mol. Struct. (THEOCHEM) 827 101

    Article  CAS  Google Scholar 

  28. James C, Amal Raj A, Reghunathan J. I H and Jayakumar V S 2006 J. Raman Spectrosc. 37 1381

    Article  CAS  Google Scholar 

  29. Na L J, Rang C Z and Fang Y Z J 2005 Zhejiang Univ. Sci. B 6 584

    Google Scholar 

  30. Fleming I 1976 In Frontier Orbitals and Organic Chemical Reactions (New York: John Wiley)

Download references

Acknowledgement

The authors SA and SSK thank the Department of Science and Technology, SERB for the financial support of this work in the form of Fasttrack Research Project scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S ATHIMOOLAM.

Additional information

Supplementary Information

X-ray crystallography data of the compound, 4CAM, is available in Cambridge Structural Database (CSD), Ref No: 877151.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 308 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ANITHA, R., GUNASEKARAN, M., KUMAR, S.S. et al. Structural and vibrational spectral studies on hydrogen bonded salts: 4-chloroanilinium maleate and nitrate. J Chem Sci 127, 1435–1450 (2015). https://doi.org/10.1007/s12039-015-0914-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-0914-y

Keywords

Navigation