Skip to main content
Log in

Investigation of physicochemical properties and catalytic activity of nanostructured Ce0.7M0.3O2−δ (M = Mn, Fe, Co) solid solutions for CO oxidation

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In this work, nanosized Ce0.7M0.3O2−δ (M = Mn, Fe, Co) solid solutions were prepared by a facile coprecipitation method and evaluated for CO oxidation. The physicochemical properties of the synthesized samples were investigated by various characterization techniques, namely, XRD, ICP-OES, BET surface area, SEM-EDX, TEM and HRTEM, Raman, XPS, and H2-TPR. XRD studies confirmed the formation of nanocrystalline single phase Ce0.7M0.3O2−δ solid solutions. ICP-OES analysis confirmed actual amount of metal loadings in the respective catalysts. The BET surface area of Ce0.7M0.3O2−δ samples significantly enhanced after the incorporation of dopants. TEM studies confirmed nanosized nature of the samples and the average particle sizes of Ce0.7M0.3O2−δ were found to be in the range of ∼8–16 nm. Raman studies indicated that the incorporation of dopant ions into the CeO2 lattice promote the formation of more oxygen vacancies. The existence of oxygen vacancies and different oxidation states (Ce3+/Ce4+ and Mn2+/Mn3+, Fe2+/ Fe3+, and Co2+/Co3+) in the doped CeO2 samples were further confirmed from XPS investigation. TPR measurements revealed an enhanced reducibility of ceria after the incorporation of dopants. The catalytic activity results indicated that the doped CeO2 samples show excellent CO oxidation activity and the order of activity was found to be Ce0.7Mn0.3O2−δ > Ce0.7Fe0.3O2−δ > Ce0.7Co0.3O2−δ > CeO2. The superior CO oxidation performance of CeO2-MnOx has been attributed to a unique Ce-Mn synergistic interaction, which facilitates materials with promoted redox properties and improved oxidation activity.

The presence of structural oxygen vacancies, low temperature reducibility and synergetic interaction between Ce−O and Mn−O oxides were responsible for superior CO oxidation performance of Ce−Mn−O nano oxide compared to pure CeO2, Ce−Fe−O and Ce−Co−O samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Vecchietti J, Collins S, Delgado J J, Małecka M, Rio E D, Chen X, Bernal S and Bonivardi A 2011 Top. Catal. 54 201

    Article  CAS  Google Scholar 

  2. Xiaodong Z, Zhenping Q, Fangli Y and Yi W 2013 Chin. J. Catal. 34 1277

    Article  Google Scholar 

  3. Royer S and Duprez D 2011 Chem. Cat. Chem. 3 24

    CAS  Google Scholar 

  4. Biabani-Ravandi A and Rezaei M 2012 Chem. Eng. J. 184 141

    Article  CAS  Google Scholar 

  5. Manasilp A and Gulari E 2002 Appl. Catal., B 37 17

    Article  CAS  Google Scholar 

  6. Falcón H, Martinez-Lope M J, Alonso J A and Fierro J L G 2000 Appl. Catal., B 26 131

    Article  Google Scholar 

  7. Rao K N, Bharali P, Thrimurthulu G and Reddy B M 2010 Catal. Commun. 11 863

    Article  CAS  Google Scholar 

  8. KasÏpar J, Fornasiero P and Graziani M 1999 Catal. Today 50 285

    Article  Google Scholar 

  9. Katta L, Sudarsanam P, Thrimurthulu G and Reddy B M 2010 Appl. Catal. B 101 101

    Article  CAS  Google Scholar 

  10. Rao G R and Mishra B G 2003 Bull. Catal. Soc. India 2 122

    Google Scholar 

  11. Mai H -X, Sun L -D, Zhang Y -W, Si R, Feng W, Zhang H -P, Liu H -C and Yan C -H 2005 J. Phys. Chem. B 109 24380

    Article  CAS  Google Scholar 

  12. Meher S K and Ranga Rao G 2012 J. Colloid Interface Sci. 373 46

    Article  CAS  Google Scholar 

  13. Kehoe A B, Scanlon D O and Watson G W 2011 Chem. Mater. 23 4464

    Article  CAS  Google Scholar 

  14. Saqer S M, Kondarides D I and Verykios X E 2011 Appl. Catal. B 103 275

    Article  CAS  Google Scholar 

  15. Yeqin S, Ying Z, Hanfeng L, Zekai Z and Yinfei C 2013 Chin. J. Catal. 34 567

    Article  Google Scholar 

  16. Mousavi S M, Niaei A, Gómez M J, Salari D, Panahi P N and Abaladejo-Fuentes V 2014 Mater. Chem. Phys. 143 921

    Article  CAS  Google Scholar 

  17. Tang C -W, Wang C -B and Chien S -H 2009 Catal. Lett. 131 76

    Article  CAS  Google Scholar 

  18. Yu D, Liu Y and Wu Z 2010 Catal. Commun. 11 788

    Article  CAS  Google Scholar 

  19. Bharali P, Saikia P, Katta L and Reddy B M 2013 J. Ind. Eng. Chem. 19 327

    Article  CAS  Google Scholar 

  20. Wang J, Shen M, Wang J, Gao J, Ma J and Liu S 2011 Catal. Today 175 65

    Article  CAS  Google Scholar 

  21. Tang Y, Qiao H, Wang H and Tao P 2013 J. Mater. Chem. A 1 12512

    Article  CAS  Google Scholar 

  22. Luo J -Y, Meng M, Zha Y -Q and Guo L -H 2008 J. Phys. Chem. C 112 8694

    Article  CAS  Google Scholar 

  23. Kongzhai L, Hua W, Yonggang W and Mingchun L 2008 J. Rare Earths 26 245

    Article  Google Scholar 

  24. Zhou G, Shah P R and Gorte R J 2008 Catal. Lett. 120 191

    Article  CAS  Google Scholar 

  25. Choudhury B and Choudhury A 2012 Mater. Chem. Phys. 131 666

    Article  CAS  Google Scholar 

  26. Sudarsanam P, Mallesham B, Durgasri D N and Reddy B M 2014 RSC Adv. 4 11322

    Article  CAS  Google Scholar 

  27. Zou Z -Q, Meng M and Zha Y -Q 2010 J. Phys. Chem. C 114 468

    Article  CAS  Google Scholar 

  28. Ertl G, Knoezinger H, Schuth F and Weitkmp J 2008 In Hand book of heterogeneous catalyst 2 nd ed. (Weinheim: Wiley-VcH) Vol. 2 p.728

  29. Channei D, Inceesungvorn B, Wetchakun N, Phanichphant S, Nakaruk A, Koshy P and Sorrell C C 2013 Ceram. Int. 39 3129

    Article  CAS  Google Scholar 

  30. Yu Y, Zhong L, Ding J, Cai W and Zhong Q 2015 RSC Adv. 5 23193

    Article  CAS  Google Scholar 

  31. Zhang X, Wei J, Yang H, Liu X, Liu W, Zhang C and Yang Y 2013 Eur. J. Inorg. Chem. 4443

  32. Li K, Wang H, Wei Y and Yan D 2011 Int. J. Hydrogen Energy 36 3471

    Article  CAS  Google Scholar 

  33. Qiao D, Lu G, Liu X, Guo Y, Wang Y and Guo Y 2011 J. Mater. Sci. 46 3500

    Article  CAS  Google Scholar 

  34. Fazio B, Spadaro L, Trunfio G, Negro J and Arena F 2011 J. Raman Spectrosc. 42 1583

    Article  CAS  Google Scholar 

  35. Zhu X, Wei Y, Wang H and Li K 4492 Int. J. Hydrogen Energy 38 2103

    Google Scholar 

  36. Lou Y, Wang L, Zhang Y, Zhao Z, Zhang Z, Lu G and Guo Y 2011 Catal. Today 175 610

    Article  CAS  Google Scholar 

  37. Yao X, Tang C, Ji Z, Dai Y, Cao Y, Gao F, Dong L and Chen Y 2013 Catal. Sci. Technol. 3 668

    Google Scholar 

  38. Zhang Y -W, Si R, Liao C -S and Yan C -H 2003 J. Phys. Chem. B 107 10159

    Article  CAS  Google Scholar 

  39. Wu Z, Jin R, Liu Y and Wang H 2008 Catal. Commun. 9 2217

    Article  CAS  Google Scholar 

  40. Zhang F, Wang P, Koberstein J, Khalid S and Chan S -W 2004 Surf. Sci. 563 74

    Article  CAS  Google Scholar 

  41. Santra C, Rahman S, Bojja S, James O O, Sen D, Maity S, Mohanty A K, Mazumder S and Chowdhury B 2013 Catal. Sci. Technol. 3 360

    Article  CAS  Google Scholar 

  42. Machida M, Uto M, Kurogi D and Kijima T 2000 Chem. Mater. 12 3158

    Article  CAS  Google Scholar 

  43. Murugan B and Ramaswamy A V 2008 J. Phys. Chem. C 112 20429

    Article  CAS  Google Scholar 

  44. Nesbitt H W and Banerjee D 1998 Am. Mineral. 83 305

    CAS  Google Scholar 

  45. Zhang Z, Han D, Wei S and Zhang Y 2010 J. Catal. 276 16

    Article  CAS  Google Scholar 

  46. Venkataswamy P, Jampaiah D, Rao K N and Reddy B M 2014 Appl. Catal., A 488 1

    Article  CAS  Google Scholar 

  47. Yamashita T and Hayes P 2008 Appl. Surf. Sci. 254 2441

    Article  CAS  Google Scholar 

  48. Li J -G, Büchel R, Isobe M, Mori T and Ishigaki T 2009 J. Phys. Chem. C 113 8009

    Article  CAS  Google Scholar 

  49. Norman C and Leach C 2011 J. Membr. Sci. 382 158

    Article  CAS  Google Scholar 

  50. Li K, Wang H, Wei Y and Yan D 2011 Chem. Eng. J. 173 574

    Article  CAS  Google Scholar 

  51. Ma C, Mu Z, He C, Li P, Li J and Hao Z 2011 J. Environ. Sci. 23 2078

    Article  CAS  Google Scholar 

  52. Chen L, Li J and Ge M 2009 J. Phys. Chem. C 113 21177

    Article  CAS  Google Scholar 

  53. Durgasri D N, Vinodkumar T and Reddy B M 2014 J. Chem. Sci. 126 429

    Article  CAS  Google Scholar 

  54. Fraccari E P, D’Alessandro O, Sambeth J, Baronetti G and Mariño F 2014 Fuel Process. Technol. 119 67

    Article  Google Scholar 

  55. Li K, Wang H, Wei Y and Yan D 2010 Chem. Eng. J. 156 512

    Article  CAS  Google Scholar 

  56. Laguna O H, Sarria F R, Centeno M A and Odriozola J A 2010 J. Catal. 276 360

    Article  CAS  Google Scholar 

  57. Ayastuy J L, Iglesias-González A and Gutiérrez-Ortiz M A 2014 Chem. Eng. J. 244 372

    Article  CAS  Google Scholar 

  58. Reddy B M, Bharali P, Saikia P, Park S -E, van den Berg M W E, Muhler M and Grünert W 2008 J. Phys. Chem. C 112 11729

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge Prof. Dr. W. Grünert, Ruhr University Bochum, Germany for providing CO oxidation results. PV thanks Council of Scientific and Industrial Research (CSIR), New Delhi for the Senior Research Fellowship. DJ thanks IICT-RMIT Joint Research Centre for the award of Junior Research Fellowship. Financial support was received from the Department of Science and Technology, New Delhi, under SERB Scheme (SB/S1/PC-106/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BENJARAM M REDDY.

Additional information

Supplementary Information

Detailed information about the Williamson-Holl (We-H) plots, CO oxidation profile, calculation of crystallite size using Debye-Scherrer equation, chemical composition by ICP-OES analysis, surface reduction temperatures, and characteristic temperatures of CO oxidation of all the investigated catalysts calcined at 773 K are available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 280 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

VENKATASWAMY, P., JAMPAIAH, D., ANIZ, C.U. et al. Investigation of physicochemical properties and catalytic activity of nanostructured Ce0.7M0.3O2−δ (M = Mn, Fe, Co) solid solutions for CO oxidation. J Chem Sci 127, 1347–1360 (2015). https://doi.org/10.1007/s12039-015-0897-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-0897-8

Keywords

Navigation