Skip to main content
Log in

Design of optimal laser pulses to control molecular rovibrational excitation in a heteronuclear diatomic molecule#

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Optimal control theory in combination with time-dependent quantum dynamics is employed to design laser pulses which can perform selective vibrational and rotational excitations in a heteronuclear diatomic system. We have applied the conjugate gradient method for the constrained optimization of a suitably designed functional incorporating the desired objectives and constraints. Laser pulses designed for several excitation processes of the HF molecule were able to achieve predefined dynamical goals with almost 100% yield.

State selective control of vibrational and rotational molecular dynamics in HF by optimally designed laser pulses with high yields is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bloembergen N and Zewail A H 1984 J. Phys. Chem. 88 5459

    Article  CAS  Google Scholar 

  2. Cantrell C D (ed.) 1986 Multi-photon excitation and dissociation of polyatomic molecule (Berlin: Springer)

    Google Scholar 

  3. Bandrauk A D (ed.) 1988 Atomic and molecular processes with short intense laser pulses (New York: Plenum)

    Google Scholar 

  4. Brumer P and Shapiro M 1992 Annu. Rev. Phys. Chem. 43 257

    Article  CAS  Google Scholar 

  5. Sharma S, Sharma P, Singh H and Balint-Kurti G G 2009 J. Mol. Model 15 623

    Article  CAS  Google Scholar 

  6. Singh H, Sharma S, Kumar P, Harvey J and Balint-Kurti G G 2008 Lect. Notes Comput. Sci. 5102 387

    Article  Google Scholar 

  7. Sharma S, Singh H and Balint-Kurti G G 2010 J. Chem. Phys. 132 064108

    Article  Google Scholar 

  8. Sharma S, Sharma P and Singh H 2007 J. Chem. Sci. 119 433

    Article  CAS  Google Scholar 

  9. Shi S and Rabitz H 1991 Comp. Phys. Commun. 63 71

    Article  CAS  Google Scholar 

  10. Jakubetz W, Kades E and Manz J 1993 J. Phys. Chem. 97 12609

    Article  CAS  Google Scholar 

  11. Korolkov M V, Manz J and Paramonov G K 1997 Chem. Phys. S341

  12. Andrianov I V and Paramonov G K 1999 Phys. Rev. A 59 2134

    Article  CAS  Google Scholar 

  13. Zhao Y and Kühn O 1999 Chem. Phys. Lett. 302 7

    Article  CAS  Google Scholar 

  14. Levis R J, Menkir G M and Rabitz H 2001 Science 292 709

    Article  CAS  Google Scholar 

  15. Brixner T and Gerber G 2003 Chem. Phys. Chem. 4 418

    Article  CAS  Google Scholar 

  16. Ohtsuki Y and Fujimura Y 2007 Chem. Phys. 338 285

    Article  CAS  Google Scholar 

  17. Lindinger A, Lupulescu C, Plewicki M, Vetter F, Merli A, Weber S M and L. Wöste 2004 Phys. Rev. Lett. 93 033001

    Article  Google Scholar 

  18. Kurosaki Y, Yokoyama K and Yokoyama A 2009 J. Chem. Phys. 131 144305

    Article  Google Scholar 

  19. Combariza J E, Manz J and Paramonov G K 1991 Faraday Discuss. Chem. Soc. 91 358

    Google Scholar 

  20. Großmann F, Feng L, Schmidt G, Kunert T and R. Schmidt 2002 Europhys. Lett. 60 201

    Article  Google Scholar 

  21. Artamonov M, Ho T -S and Rabitz H 2006 Chem. Phys. 328 147

    Article  CAS  Google Scholar 

  22. Nielsen M A and Chuang I L 2006 Quantum computation and quantum information (London: Cambridge University Press)

    Google Scholar 

  23. Vala J, Amitay Z, Zhang B, Leone S R and Kosloff R 2002 Phys. Rev. A 66 062316

    Article  Google Scholar 

  24. Ohtsuki Y 2005 Chem. Phys. Lett. 404 126

    Article  CAS  Google Scholar 

  25. de Vivie-Riedle R and Troppmann U 2007 Chem. Rev. 107 5082

    Article  Google Scholar 

  26. Babikov D 2004 J. Chem. Phys. 121 7577

    Article  CAS  Google Scholar 

  27. Shioya K, Mishima K, and Yamashita K 2007 Mol. Phys. 105 1283

    Article  CAS  Google Scholar 

  28. Tsubouchi M and Momose T 2008 Phys. Rev. A 77 052326

    Article  Google Scholar 

  29. Zaari R R and Brown A 2010 J. Chem. Phys. 132 014307

    Article  Google Scholar 

  30. Rice S A and Zhao M 2000 Optical control of molecular dynamics (New York: Wiley Interscience)

    Google Scholar 

  31. Shapiro M and Brumer P 2003 Principles of the quantum control of molecular processes (Canada: John Wiley and Sons)

    Google Scholar 

  32. Balint-Kurti G G, Zou S and Brown A 2008 Adv. Chem. Phys. 138 43

    Article  CAS  Google Scholar 

  33. Balint-Kurti G G, Manby F R, Ren Q, Artamonov M, Ho T -S and Rabitz H 2005 J. Chem. Phys. 122 084110

    Article  Google Scholar 

  34. Ren Q, Balint-Kurti G G, Manby F R, Artamonov M, Ho T -S and Rabitz H 2006 J. Chem. Phys. 124 014111

    Article  Google Scholar 

  35. Ren Q, Balint-Kurti G G, Manby F R, Artamonov M, Ho T -S and Rabitz H 2006 J. Chem. Phys. 125 021104

    Article  Google Scholar 

  36. Hermann T, Ren Q, Balint-Kurti G G and Manby F R 2007 J. Chem. Phys. 126 224309

    Article  Google Scholar 

  37. Zou S, Balint-Kurti G G and Manby F R 2007 J. Chem. Phys. 127 044107

    Article  Google Scholar 

  38. Ren Q and Balint-Kurti G G 2009 J. Phys. Chem. A 113 14255

    Article  CAS  Google Scholar 

  39. Shi S and Rabitz H 1990 J. Chem. Phys. 92 364

    Article  CAS  Google Scholar 

  40. Sundermann K and de Vivie-Riedle R 1999 J. Chem. Phys. 110 1896

    Article  CAS  Google Scholar 

  41. Lin J T and Jiang T F 1999 J. Phys. B: At. Mol. Opt. Phys. 32 4001

    Article  CAS  Google Scholar 

  42. Press W H, Teukolsky S A, Vetterling W T and Flannery B P 2000 Numerical recipes (Cambridge: Cambridge University Press)

    Google Scholar 

  43. Birgin E G, Martinez J M and Raydan M 2000 SIAM J. Optim. 10 1196

    Article  Google Scholar 

  44. Kosloff R 1988 J. Phys. Chem. 92 2087

    Article  CAS  Google Scholar 

  45. Rabiner L R and Rader C M (eds.) 1972 Digital signal processing: IEEE press selected reprint series (New York: IREEE press)

    Google Scholar 

  46. Offer A R and Balint-Kurti G G 1994 J. Chem. Phys. 101 10416

    Article  CAS  Google Scholar 

  47. Marston C C and Balint-Kurti G G 1989 J. Chem. Phys. 91 3571

    Article  CAS  Google Scholar 

  48. Feit M D and Fleck J A Jr 1983 J. Chem. Phys. 78 301

    Article  CAS  Google Scholar 

  49. Kosloff D and Kosloff R 1983 J. Comp. Phys. 52 35

    Article  CAS  Google Scholar 

  50. Kosloff R 1988 J. Phys. Chem. 92 2087

    Article  CAS  Google Scholar 

  51. Light J C, Hamilton I P and Lill V J 1985 J. Chem. Phys. 82 1400

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HARJINDER SINGH.

Additional information

Dedicated to Prof. N Sathyamurthy on his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

SHARMA, S., BALINT-KURTI, G.G. & SINGH, H. Design of optimal laser pulses to control molecular rovibrational excitation in a heteronuclear diatomic molecule# . J Chem Sci 124, 99–104 (2012). https://doi.org/10.1007/s12039-011-0198-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-011-0198-9

Keywords

Navigation