Skip to main content
Log in

Design of laser pulses for selective vibrational excitation of the N6-H bond of adenine and adenine-thymine base pair using optimal control theory

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Time dependent quantum dynamics and optimal control theory are used for selective vibrational excitation of the N6-H (amino N-H) bond in free adenine and in the adenine-thymine (A-T) base pair. For the N6-H bond in free adenine we have used a one dimensional model while for the hydrogen bond, N6-H(A)...O4(T), present in the A-T base pair, a two mathematical dimensional model is employed. The conjugate gradient method is used for the optimization of the field dependent cost functional. Optimal laser fields are obtained for selective population transfer in both the model systems, which give virtually 100% excitation probability to preselected vibrational levels. The effect of the optimized laser field on the other hydrogen bond, N1(A)...H-N3(T), present in A-T base pair is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rice S, Zhao M (2000) Optical control of molecular dynamics. Wiley-Interscience, New York

    Google Scholar 

  2. Shapiro M, Brumer P (2003) Principles of the quantum control of molecular processes. Wiley-Interscience, New York

    Google Scholar 

  3. Ohtsuki Y, Nakagami K, Fujimura Y (2001) J Chem Phys 114:8867–8876

    Article  CAS  Google Scholar 

  4. Tannor DJ, Rice SA (1985) J Chem Phys 83:5013–5018

    Article  CAS  Google Scholar 

  5. Tannor DJ, Kosloff R, Rice SA (1986) J Chem Phys 85:5805–5820

    Article  CAS  Google Scholar 

  6. Tannor DJ, Rice SA (1988) Adv Chem Phys 70:441–523

    Article  CAS  Google Scholar 

  7. Nuernberger P, Vogt G, Brixner T, Gerber G (2007) Phys Chem Chem Phys 9:2470–2497

    Article  CAS  Google Scholar 

  8. Balint-Kurti GG, Manby FR, Ren Q, Artamonov M, Ho T, Rabitz H (2005) J Chem Phys 122:084110

    Google Scholar 

  9. Ren Q, Balint-Kurti GG, Manby FR, Artamonov M, Ho T, Rabitz H (2006) J Chem Phys 124:014111

    Google Scholar 

  10. Balint-Kurti GG, Zou S and Brown A (2008) Adv Chem Phys 138:43–94

    Google Scholar 

  11. Shapiro M, Brumer P (1992) Ann Rev Phys Chem 43:257–282

    Article  Google Scholar 

  12. Gross P, Singh H, Rabitz H, Mease K, Huang GM (1993) Phys Rev A 47:4593–4604

    Article  CAS  Google Scholar 

  13. Sharma S, Sharma P, Singh H (2007) J Chem Sci 119:433–440

    Google Scholar 

  14. Kumar P, Singh H (2007) J Chem Sci 119:441–447

    Google Scholar 

  15. Kumar P, Sharma S, Singh H (2008) J Theo Comput Chem 7 (in press)

  16. Peirce AP, Dahleh MA, Rabitz H (1998) Phys Rev A 37:4950–4964

    Article  Google Scholar 

  17. de Vivie-Riedle R, Troppmann U (2007) Chem Rev 107:5082–5100

    Article  Google Scholar 

  18. Meier C, Heitz MC (2005) J Chem Phys 123:044504

    Article  Google Scholar 

  19. Ventalon C, Fraser JM, Vos MH, Alexandrou A, Martin JL, Joffre M (2004) Proc Natl Acad Sci U S A 101:13216–13220

    Article  CAS  Google Scholar 

  20. Abe M, Ohtsuki Y, Fujimara Y, Domcke W (2005) J Chem Phys 123:144508

    Article  Google Scholar 

  21. Singh H, Sharma S, Kumar P, Harvey J, Balint-Kurti GG (2008) Lec Notes in Comp Sc 5102:387–395

    Article  Google Scholar 

  22. Nibbering ETJ, Dreyer J, Kuhn O, Bredenbeck J, Hamm P, Elsaesser T (2007) Vibrational dynamics of hydrogen bonds, Springer series in chemical physics. Springer Berlin Heidelberg 87:619–687

  23. Ohmura H, Nakanaga T (2003) J Photochem Photobiol A: Chem 158:69–76

    Article  CAS  Google Scholar 

  24. Lami A, Villani G (2007) Theor Chem Acc 117:755–764

    Google Scholar 

  25. Villani G (2005) Chem Phys 316:1–8

    Google Scholar 

  26. Villani G (2006) Chem Phys 324:438–446

    Google Scholar 

  27. Šponer J, Jurečka P, Hobza P (2004) J Am Chem Soc 126:10142–10151

    Article  Google Scholar 

  28. Frisch MJ et al. (2003) Gaussian03 revison B.05 Gaussian Inc Pittsburgh PA

  29. Feit MD, Fleck Jr JA (1983) J Chem Phys 78:301–308

    Google Scholar 

  30. Feit MD, Fleck Jr JA (1984) J Chem Phys 80:2578–2584

    Google Scholar 

  31. Marston Clay C, Balint-Kurti GG (1989) J Chem Phys 91:3571–3578

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Royal Society and British Council, India for supporting this work. SS and PS thank CSIR, New Delhi for research fellowships. The travel grants from DST (for SS) and DBT (for PS) for attending MDMM-2008, Piechowice, Poland are greatfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harjinder Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S., Sharma, P., Singh, H. et al. Design of laser pulses for selective vibrational excitation of the N6-H bond of adenine and adenine-thymine base pair using optimal control theory. J Mol Model 15, 623–631 (2009). https://doi.org/10.1007/s00894-008-0383-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0383-z

Keywords

PACS

Navigation