Skip to main content
Log in

Quantum control of vibrational excitations in a heteronuclear diatomic molecule

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Optimal control theory is applied to obtain infrared laser pulses for selective vibrational excitation in a heteronuclear diatomic molecule. The problem of finding the optimized field is phrased as a maximization of a cost functional which depends on the laser field. A time dependent Gaussian factor is introduced in the field prior to evaluation of the cost functional for better field shape. Conjugate gradient method21,24 is used for optimization of constructed cost functional. At each instant of time, the optimal electric field is calculated and used for the subsequent quantum dynamics, within the dipole approximation. The results are obtained using both Morse potential as well as potential energy obtained using ab initio calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rice S and Zhao M 2000 Optical control of molecular dynamics (John Wiley Sons: USA)

    Google Scholar 

  2. Shapiro M and Brumer P 2003 Principles of the quantum control of molecular processes (John Wiley Sons: USA)

    Google Scholar 

  3. Tannor D J and Rice S 1985 J. Chem. Phys. 83 5013

    Article  CAS  Google Scholar 

  4. Brumer P and Shapiro M 1986 Chem. Phys. Lett. 126 541

    Article  CAS  Google Scholar 

  5. Shi S and Rabitz H 1990 J. Chem. Phys. 92 364

    Article  CAS  Google Scholar 

  6. Gross P, Singh H, Rabitz H, Mease K and Huang G M 1993 Phys. Rev. A47 4593

    Google Scholar 

  7. Assion A, Baumert T, Bergt M, Brixner T, Kiefer B, Seyfried V, Strehle M and Gerber G 1998 Science 282 919

    Article  CAS  Google Scholar 

  8. Levis R J, Mnkir G M and Rabitz H 2001 Science 292 709

    Article  CAS  Google Scholar 

  9. Vajda S et al 2001 Chem. Phys. 267 231

    Article  CAS  Google Scholar 

  10. Nuernberger P, Vogt G, Brixner T and Gerber G 2007 Phys. Chem. Chem. Phys. 9 2470

    Article  CAS  Google Scholar 

  11. Tesch C M and Vivie-Riedle R de 2002 Phys. Rev. Lett. 89 157901

    Google Scholar 

  12. Shapiro M and Brumer P 1989 Acc. Chem. Res. 22 407

    Article  Google Scholar 

  13. Brumer P and Shapiro M 1992 Ann. Rev. Phys. Chem. 43 257

    Article  CAS  Google Scholar 

  14. Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003

    Article  CAS  Google Scholar 

  15. Goswami D 2003 Phys. Rep. 374 385

    Article  CAS  Google Scholar 

  16. Peirce A P, Dahleh M A and Rabitz H 1988 Phys. Rev. A37 4950

    Google Scholar 

  17. Dahleh M A, Peirce A P and Rabitz H 1990 Phys. Rev. A42 1065

    Google Scholar 

  18. Palao J P and Kosloff R 2003 Phys. Rev. A68 062308

    Google Scholar 

  19. Zhu W, Botina J and Rabitz H 1998 J. Chem. Phys. 108 1953

    Article  CAS  Google Scholar 

  20. Balint-Kurti G G, Zou S and Brown A 2007 Adv. Chem. Phys. (in press)

  21. Balint-Kurti G G, Manby F R, Ren Q, Artamonov M, Ho T and Rabitz H 2005 J. Chem. Phys. 122 084110 (b) Ren Q, Balint-Kurti G G, Manby F R, Artamonov M, Ho T and Rabitz H 2006 J. Chem. Phys. 124 014111

  22. Sundermann K and Vivie-Riedle R de 1999 J. Chem. Phys. 110 1896

    Article  CAS  Google Scholar 

  23. Shah S P and Rice S A 2000 J. Chem. Phys. 113 6536

    Article  CAS  Google Scholar 

  24. Press W H, Teukolsky S A, Vetterling W T and Flannery B P 2000 Numerical Recipes in FORTRAN, (Cambridge U. P.)

  25. Kumar P, Sharma S and Singh H (in this issue)

  26. Feit M D and Fleck Jr J A 1983 J. Chem. Phys. 78 301

    Article  CAS  Google Scholar 

  27. Feit M D and Fleck Jr J A 1984 J. Chem. Phys. 80 2578

    Article  CAS  Google Scholar 

  28. Polak E 1971 Computational methods in optimization, mathematics in science and engineering (New York: Academic), vol 77

    Google Scholar 

  29. Birgin E G, Martinez J M and Raydan M 2000 SIAM J. Optim. 10 1996

    Article  Google Scholar 

  30. Digital Signal Processing (eds) L R Rabiner and C M Rader 1972 (New York: IEEE)

    Google Scholar 

  31. Gross P, Neuhauser D and Rabitz H 1992 J. Chem. Phys. 96 2834

    Article  CAS  Google Scholar 

  32. Becke A D 1993 J. Chem. Phys. 98 5648 (b) Lee C, Yang W, Parr R G 1988 Phys. Rev. B37 785 (c) Frisch M J et al 2004 Gaussian 03, revision C.02, Gaussian Inc. Wallingford CT

    Article  CAS  Google Scholar 

  33. Clay C Marston and Balint-kurti G G 1989 J. Chem. Phys. 91 3571

    Article  CAS  Google Scholar 

  34. Stine J R and Noid D W 1979 Opt. Commun. 31 161

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harjinder Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S., Sharma, P. & Singh, H. Quantum control of vibrational excitations in a heteronuclear diatomic molecule. J Chem Sci 119, 433–440 (2007). https://doi.org/10.1007/s12039-007-0056-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-007-0056-y

Keywords

Navigation