Skip to main content
Log in

Impact of cyanobacterial bloom on microbiomes of freshwater lakes

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Cyanobacterial blooms are harmful because of their cyanotoxins production. It occurs due to the eutrophication of freshwater reserves. Nagpur city has three lakes which serves as public water resource and are affected by algal bloom events. Metagenomic approach was used for the exploration of taxonomic, catabolic, and resistome profile of these lakes. Taxonomic profiling indicated prevalence of cyanobacterial species like Microcystis, Anabaena, Trichodesmium, Microcoleus, and Nodularia. These bacteria are well known for their association with algal bloom and microcystin production. High Performance Liquid Chromatography (HPLC) detected the presence of microcystin toxin and concentration was relatively higher in Ambazari lakewater. In addition, the presence of several antibiotic resistance genes like vancomycin, beta-lactamase, methicillin, and fluoroquinolones were observed. Genes conferring metal resistance such as copper, cadmium, zinc were also mined indicating presence of metal resistant microorganisms. The study suggests that lake water contaminated with Microcystis (algal bloom) harbors complex microbial community having diverse catabolic and resistome profiles, which negatively affect the ecosystems services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Bardou P, Mariette J, Escudié F, Djemiel C and Klopp C 2014 Jvenn: an interactive Venn diagram viewer. BMC Bioinform. 15 293

    Google Scholar 

  • Batista A, Woodhouse J, Grossart H-P and Giani A 2019 Methanogenic archaea associated to Microcystis sp. in field samples and in culture. Hydrobiologia 831 163–172

    CAS  Google Scholar 

  • Bengtsson-Palme J and Larsson DG 2015 Antibiotic resistance genes in the environment: prioritizing risks. Nat. Rev. Microbiol. 13 396

    CAS  PubMed  Google Scholar 

  • Beversdorf LJ, Chaston SD, Miller TR and McMahon KD 2015 Microcystin mcyA and mcyE gene abundances are not appropriate indicators of microcystin concentrations in lakes. PLoS One

    Article  PubMed  PubMed Central  Google Scholar 

  • Bif MB, de Souza MS, Costa LDF and Yunes JS 2019 Microplankton community composition associated with aggregations of toxic Trichodesmium in the Southwest Atlantic Ocean. Front. Marine Sci. 6 23

    Google Scholar 

  • Deng Y, Wu M, Zhang H, Zheng L, Acosta Y and Hsu T-TD 2017 Addressing harmful algal blooms (HABs) impacts with ferrate(VI): Simultaneous removal of algal cells and toxins for drinking water treatment. Chemosphere 186 757–761

    CAS  PubMed  Google Scholar 

  • Fire SE, Browning JA, Durden WN and Stolen MK 2020 Comparison of during-bloom and inter-bloom brevetoxin and saxitoxin concentrations in Indian River Lagoon bottlenose dolphins, 2002–2011. Aquat. Toxicol. 218 105371

    CAS  PubMed  Google Scholar 

  • Founou RC, Founou LL and Essack SY 2017 Clinical and economic impact of antibiotic resistance in developing countries: a systematic review and meta-analysis. PLoS One 12 e0189621

    PubMed  PubMed Central  Google Scholar 

  • Goyal MK and Surampalli RY 2018 Impact of climate change on water resources in India. J. Environ. Engin. 144 04018054

    Google Scholar 

  • Grabowska M and Pawlik-Skowrońska B 2008 Replacement of chroococcales and nostocales by oscillatoriales caused a significant increase in microcystin concentrations in a dam reservoir. Oceanol. Hydrobiol. Stud. 37 23–33

    Google Scholar 

  • Guo J, Li J, Chen H, Bond PL and Yuan Z 2017 Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements. Water Res. 123 468–478

    CAS  PubMed  Google Scholar 

  • Guo Y, Liu M, Liu L, Liu X, Chen H and Yang J 2018 The antibiotic resistome of free-living and particle-attached bacteria under a reservoir cyanobacterial bloom. Environ. Int. 117 107–115

    CAS  PubMed  Google Scholar 

  • Hofer U 2013 Getting to the bottom of cyanobacteria. Nat. Rev. Microbiol. 11 818–819

    CAS  PubMed  Google Scholar 

  • Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH and Visser PM 2018 Cyanobacterial blooms. Nat. Rev. Microbiol. 16 471–483

    CAS  PubMed  Google Scholar 

  • Kovalakova P, Cizmas L, McDonald TJ, Marsalek B, Feng M and Sharma VK 2020 Occurrence and toxicity of antibiotics in the aquatic environment: a review. Chemosphere 251 126351

    CAS  PubMed  Google Scholar 

  • Laczny CC, Kiefer C, Galata V, Fehlmann T, Backes C and Keller A 2017 BusyBee Web: metagenomic data analysis by bootstrapped supervised binning and annotation. Nucleic Acids Res. 45 W171–W179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q and Zhang Q 2020 Prevalence and pollution characteristics of antibiotic resistant genes in one high anthropogenically-impacted river. PLoS One 15 e0231128

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacFadden DR, McGough SF, Fisman D, Santillana M and Brownstein JS 2018 Antibiotic resistance increases with local temperature. Nat. Clim. Chang. 8 510–514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maske SS, Sangolkar LN and Chakrabarti T 2010 Temporal variation in density and diversity of cyanobacteria and cyanotoxins in lakes at Nagpur (Maharashtra State) India. Environ. Monitor. Assessment 169 299–308

    CAS  Google Scholar 

  • McAlice BJ 1971 Phytoplankton sampling with the Sedgwick-Rafter Cell 1. Limnol. Oceanogr. 16 19–28

    Google Scholar 

  • McArthur AG and Tsang KK 2017 Antimicrobial resistance surveillance in the genomic age. Ann. NY Acad. Sci. 1388 78–91

    PubMed  Google Scholar 

  • McLellan NL and Manderville RA 2017 Toxic mechanisms of microcystins in mammals. Toxicol. Res. 6 391–405

    CAS  Google Scholar 

  • Pal M, Pal S, Qureshi A and Sangolkar L 2018 Perspective of cyanobacterial harmful algal bloom (HAB) mitigation: Microcystis toxin degradation by bacterial consortia. Indian J. Exp. Biol. 56 511–518

    CAS  Google Scholar 

  • Pal M, Yesankar PJ, Dwivedi A and Qureshi A 2020 Biotic control of harmful algal blooms (HABs): A brief review. J. Environ. Manag. 268 110687

    CAS  Google Scholar 

  • Pal M, Purohit H and Qureshi A 2021 Genomic insight for Algicidal activity in Rhizobium sp. (AQ_MP). Arch. Microbiol. 203 5193–5203

    CAS  PubMed  Google Scholar 

  • Parks DH, Tyson GW, Hugenholtz P and Beiko RG 2014 STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30 3123–3124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Proença L, Tamanaha M and Fonseca R 2009 Screening the toxicity and toxin content of blooms of the cyanobacterium Trichodesmium erythraeum (Ehrenberg) in northeast Brasil. J. Venom. Animals Toxins Trop. Dis. 15 204–215

    Google Scholar 

  • Reardon S 2014 Antibiotic resistance sweeping developing world: bacteria are increasingly dodging extermination as drug availability outpaces regulation. Nature 509 141–143

    CAS  PubMed  Google Scholar 

  • Riebesell U, Aberle-Malzahn N, Achterberg EP, et al. 2018 Toxic algal bloom induced by ocean acidification disrupts the pelagic food web. Nat. Clim. Chang. 8 1082–1086

    CAS  Google Scholar 

  • Sangolkar LN, Maske SS, Muthal PL, Kashyap SM and Chakrabarti T 2009 Isolation and characterization of microcystin producing Microcystis from a Central Indian water bloom. Harmful Algae 8 674–684

    CAS  Google Scholar 

  • Saraf SR, Frenkel A, Harke MJ, Jankowiak JG, Gobler CJ and McElroy AE 2018 Effects of Microcystis on development of early life stage Japanese medaka (Oryzias latipes): Comparative toxicity of natural blooms, cultured Microcystis and microcystin-LR. Aquat. Toxicol. 194 18–26

    CAS  PubMed  Google Scholar 

  • Schmitt CK, Meysick KC and O’Brien AD 1999 Bacterial toxins: friends or foes? Emerg. Infect. Dis. 5 224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shang AH, Ye J, Chen DH, Lu XX, Lu HD, Liu CN and Wang LM 2015 Physiological effects of tetracycline antibiotic pollutants on non-target aquatic Microcystis aeruginosa. J. Environ. Sci. Health B 50 809–818

    CAS  PubMed  Google Scholar 

  • Steffen MM, Li Z, Effler TC, Hauser LJ, Boyer GL and Wilhelm SW 2012 Comparative metagenomics of toxic freshwater cyanobacteria bloom communities on two continents. PLoS ONE

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun R, Sun P, Zhang J, Esquivel-Elizondo S and Wu Y 2018 Microorganisms-based methods for harmful algal blooms control: a review. Bioresource Technol. 248 12–20

    CAS  Google Scholar 

  • Swift BMC, Bennett M, Waller K, et al. 2019 Anthropogenic environmental drivers of antimicrobial resistance in wildlife. Sci. Total Environ. 649 12–20

    CAS  PubMed  Google Scholar 

  • Tommasi R, Brown DG, Walkup GK, Manchester JI and Miller AA 2015 ESKAPEing the labyrinth of antibacterial discovery. Nat. Rev. Drug Discov. 14 529–542

    CAS  PubMed  Google Scholar 

  • Wang J-H, Lu J, Zhang Y-X, Wu J, Luo Y and Liu H 2018 Metagenomic analysis of antibiotic resistance genes in coastal industrial mariculture systems. Bioresource Technol. 253 235–243

    CAS  Google Scholar 

  • Waseem H, Williams MR, Stedtfeld RD and Hashsham SA 2017 Antimicrobial resistance in the environment. Water Environ. Res. 89 921–941

    CAS  PubMed  Google Scholar 

  • Welker M and Steinberg C 2000 Rates of humic substance photosensitized degradation of microcystin-LR in natural waters. Environ. Sci. Technol. 34 3415–3419

    CAS  Google Scholar 

  • Wells ML, Trainer VL, Smayda TJ, et al. 2015 Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae 49 68–93

    PubMed  PubMed Central  Google Scholar 

  • Wentzky VC, Tittel J, Jäger CG, Bruggeman J and Rinke K 2020 Seasonal succession of functional traits in phytoplankton communities and their interaction with trophic state. J. Ecol. 108 1649–1663

    CAS  Google Scholar 

  • WHO 2014 Antimicrobial resistance: 2014 global report on surveillance (World Health Organization)

  • WHO 2017 Global action plan on antimicrobial resistance 2015 (Geneva: World Health Organization)

  • Yadav S and Kapley A 2019 Exploration of activated sludge resistome using metagenomics. Sci. Total Environ. 692  1155–1164 

    CAS  PubMed  Google Scholar 

  • Yang J, Tang H, Zhang X, Zhu X, Huang Y and Yang Z 2018 High temperature and pH favor Microcystis aeruginosa to outcompete Scenedesmus obliquus. Environ. Sci. Pollut. Res. 25 4794–4802

    CAS  Google Scholar 

  • Yang XE, Wu X, Hao HL and He ZL 2008 Mechanisms and assessment of water eutrophication. J. Zhejiang Univ. Sci. B 9 197–209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye J, Song Z, Wang L and Zhu J  2016  Metagenomic analysis of microbiota structure evolution in phytoremediation of a swine lagoon wastewater. Biores. Technol. 219  439−444

    CAS  Google Scholar 

  • Zhang D, Xie P, Liu Y, Chen J and Wen Z 2009 Spatial and temporal variations of microcystins in hepatopancreas of a freshwater snail from Lake Taihu. Ecotoxicol. Environ. Safe. 72 466–472

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, CSIR-NEERI (KRC no. CSIR-NEERI/KRC/2020/FEB/EBGD/1, for providing all the necessary infrastructure required for the experimentation. The authors also thank DBT, New Delhi (BT/PR16149/NER/95/85/2015 dated 19/01/2017) for the funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asifa Qureshi.

Additional information

Corresponding editor: BJ Rao.

Corresponding editor: BJ RAO

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3314 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, M., Yadav, S., Kapley, A. et al. Impact of cyanobacterial bloom on microbiomes of freshwater lakes. J Biosci 46, 96 (2021). https://doi.org/10.1007/s12038-021-00220-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-021-00220-z

Keywords

Navigation