Skip to main content

Advertisement

Log in

Advances in Bone tissue engineering: A fundamental review

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Bone is a dynamic tissue that can always rebuild itself by modeling and remodeling to maintain functionality. This tissue is responsible for several vital functions in the body, such as providing structural support for soft tissues and the body, being the central region of hematopoiesis in human adults, and contributing to mineral homeostasis. Besides, it has an innate ability of auto-regeneration when damaged. All of these processes involve several molecular cues related to biochemical and mechanical stimulus. However, when the lesion is complicated or too big, it is necessary to intervene surgically, which may not effectively solve the problem. Bone tissue engineering seeks to provide resources to resolve these clinical issues and has been advancing in recent years, presenting promising devices for bone tissue repair. The understanding of some important biofactors and bone stem-cells influence might be crucial for an effective regenerative medicine, since bone is one of the most transplanted tissues. So, the purpose of this article is to provide an overview of the bone tissue, including the role of stem cells and some of the bioactive molecules associated with these processes. Finally, we will suggest future directions for bone tissue engineering area that might be helpful in order to produce biomimetic bone substitutes that become a real alternative to translational medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Abbasi N, Lee RS, Ivanovski S, Love RM, Hamlet S 2020 In vivo bone regeneration assessment of offset and gradient melt electrowritten (MEW) PCL scaffolds. Biomater. Res. 24 1–24.

    Article  CAS  Google Scholar 

  • Agarwal R, García AJ 2015 Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv. Drug Del. Rev. 94 53–62.

    Article  CAS  Google Scholar 

  • Ajdari A, Jahromi BH, Papadopoulos J, Nayeb-Hashemi H, Vaziri A 2012 Hierarchical honeycombs with tailorable properties. Int. J. Solids Struct. 49 1413–1419.

    Article  Google Scholar 

  • Amini AR, Laurencin CT, Nukavarapu SP 2012 Bone tissue engineering: recent advances and challenges. Crit. Rev.Biomed. Eng. https://doi.org/10.1615/CritRevBiomedEng.v40.i5.10

  • Andreasen CM, Delaisse JM, van der Eerden BC, van Leeuwen JP, Ding M, Andersen TL 2018 Understanding age-induced cortical porosity in women: Is a negative bmu balance in quiescent osteons a major contributor? Bone 117 70–82.

    Article  PubMed  Google Scholar 

  • Angelin B, Larsson TE, Rudling M 2012 Circulating fibroblast growth factors as metabolic regulators—a critical appraisal. Cell Metab. 16 693–705.

    Article  CAS  PubMed  Google Scholar 

  • Azevedo HS, Pashkuleva I 2015 Biomimetic supramolecular designs for the controlled release of growth factors in bone regeneration. Adv. Drug Del. Rev. 94 63–76.

    Article  CAS  Google Scholar 

  • Babaee S, Shim J, Weaver JC, Chen ER, Patel N, Bertoldi K 2013 3D soft metamaterials with negative Poisson’s ratio. Adv. Mater. 25 5044–5049.

    Article  CAS  PubMed  Google Scholar 

  • Bae EB, Park KH, Shim JH, Chung HY, Choi JW, Lee JJ, Kim CH, Jeon HJ, Kang SS, Huh JB 2018 Efficacy of rhbmp-2 loaded pcl/\(\beta \)-tcp/bdecm scaffold fabricated by 3D printing technology on bone regeneration. BioMed Res. Int. https://doi.org/10.1155/2018/2876135

    Book  Google Scholar 

  • Barcak EA, Beebe MJ 2017 Bone morphogenetic protein: is there still a role in orthopedic trauma in 2017? Orthop. Clin. North Am. 48 301–309.

    Article  PubMed  Google Scholar 

  • Birkhold AI, Razi H, Weinkamer R, Duda GN, Checa S, Willie BM 2015 Monitoring in vivo (re) modeling: a computational approach using 4d microct data to quantify bone surface movements. Bone 75 210–221.

    Article  PubMed  Google Scholar 

  • Bose S, Vahabzadeh S, Bandyopadhyay A 2013 Bone tissue engineering using 3D printing. Mater. Today 16 496–504.

    Article  CAS  Google Scholar 

  • Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R 2010 Guidelines for assessment of bone microstructure in rodents using micro–computed tomography. J. Bone Min. Res. 25 1468–1486.

    Article  Google Scholar 

  • Breeland G, Menezes RG 2020 Embryology, bone ossification. In: StatPearls [Internet], StatPearls Publishing

  • Carragee EJ, Hurwitz EL, Weiner BK 2011 A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 11 471–491.

    Article  PubMed  Google Scholar 

  • Cavazzuti M, Baldini A, Bertocchi E, Costi D, Torricelli E, Moruzzi P 2011 High performance automotive chassis design: a topology optimization based approach. Struct. Multidiscip. Optim. 44 45–56.

    Article  Google Scholar 

  • Chandra A, Lan S, Zhu J, Siclari VA, Qin L 2013 Epidermal growth factor receptor (egfr) signaling promotes proliferation and survival in osteoprogenitors by increasing early growth response 2 (egr2) expression. J. Biol. Chem. 288 20488–20498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Deng C, Li YP 2012 Tgf-\(\beta \) and bmp signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci. 8 272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Zhao F, Li Y, Wang M, Chen X, Lei B 2020 3d-printed photoluminescent bioactive scaffolds with biomimetic elastomeric surface for enhanced bone tissue engineering. Mater. Sci. Eng. C 106 110153.

    Article  CAS  Google Scholar 

  • Chen X, Wang Z, Duan N, Zhu G, Schwarz EM, Xie C 2018 Osteoblast–osteoclast interactions. Connect. Tissue Res. 59 99–107.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Li T, Scarpa F, Wang L 2017 Lattice metamaterials with mechanically tunable Poisson’s ratio for vibration control. Phys. Rev. Appl. 7 024012.

    Article  Google Scholar 

  • Chi H, Chen G, He Y, Chen G, Tu H, Liu X, Yan J, Wang X 2020 3d-ha scaffold functionalized by extracellular matrix of stem cells promotes bone repair. Int. J. Nanomed. 15 5825.

    Article  CAS  Google Scholar 

  • Chocholata P, Kulda V, Babuska V 2019 Fabrication of scaffolds for bone-tissue regeneration. Materials 12 568.

    Article  CAS  PubMed Central  Google Scholar 

  • Clarkin CE, Gerstenfeld LC 2013 Vegf and bone cell signalling: an essential vessel for communication? Cell Biochem. Funct. 31 1–11.

    CAS  Google Scholar 

  • Costa A, Xavier T, Noritomi P, Saavedra G, Borges A 2014 The influence of elastic modulus of inlay materials on stress distribution and fracture of premolars. Oper. Dent. 39 E160–E170.

    Article  PubMed  Google Scholar 

  • Cunha DALVd, Inforçatti Neto P, Micocci KC, Bellani CF, Selistre-de Araujo HS, Silveira ZC, Branciforti MC 2019 Fabrication and characterization of scaffolds of poly (\(\varepsilon \)-caprolactone)/biosilicate® biocomposites prepared by generative manufacturing process. Int. J. Biomater.https://doi.org/10.1155/2019/2131467

    Book  Google Scholar 

  • Dávila JL, Freitas MSd, Inforçatti Neto P, Silveira ZdC, Silva JVLd, d’Ávila MA 2016 Fabrication of pcl/\(\beta \)-tcp scaffolds by 3D mini-screw extrusion printing. J. Appl. Polym. Sci. https://doi.org/10.1002/app.43031

    Article  Google Scholar 

  • Dávila JL, d’Ávila MA 2017 Laponite as a rheology modifier of alginate solutions: Physical gelation and aging evolution. Carbohydr. Polym. 157 1–8.

    Article  PubMed  CAS  Google Scholar 

  • De Witte TM, Fratila-Apachitei LE, Zadpoor AA, Peppas NA 2018 Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. Regener. Biomater. 5 197–211.

    Article  CAS  Google Scholar 

  • Deaton JD, Grandhi RV 2014 A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multidiscip. Optim. 49 1–38.

    Article  Google Scholar 

  • Desai SC, Sclaroff A, Nussenbaum B 2013 Use of recombinant human bone morphogenetic protein 2 for mandible reconstruction. JAMA Fac. Plast. Surg. 15 204–209.

    Article  Google Scholar 

  • Dupret-Bories A, Vergez S, Meresse T, Brouillet F, Bertrand G 2018 Contribution of 3D printing to mandibular reconstruction after cancer. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 135 133–136.

    Article  CAS  PubMed  Google Scholar 

  • Einhorn TA, Gerstenfeld LC 2015 Fracture healing: mechanisms and interventions. Nat. Rev. Rheumatol. 11 45.

    Article  PubMed  Google Scholar 

  • Eloy C, Fournier M, Lacointe A, Moulia B 2017 Wind loads and competition for light sculpt trees into self-similar structures. Nat. Commun. 8 1–12.

    Article  CAS  Google Scholar 

  • Erben RG, Andrukhova O 2015 Fgf23 regulation of renal tubular solute transport. Curr. Opin. Nephrol. Hypert. 24 450–456.

    Article  CAS  Google Scholar 

  • Fernandes LC, Vitral RWF, Noritomi PY, Schmitberger CA, da Silva Campos MJ 2019 Influence of the hyrax expander screw position on stress distribution in the maxilla: A study with finite elements. Am. J. Orthodont. Dentofac. Orthop. 155 80–87.

    Article  Google Scholar 

  • Frenkel B, Hong A, Baniwal SK, Coetzee GA, Ohlsson C, Khalid O, Gabet Y 2010 Regulation of adult bone turnover by sex steroids. J. Cell. Phys. 224 305–310.

    Article  CAS  Google Scholar 

  • Gibson LJ, Ashby MF 1999 Cellular solids: structure and properties. Cambridge University Press, Cambridge

    Google Scholar 

  • Goetz R, Mohammadi M 2013 Exploring mechanisms of fgf signalling through the lens of structural biology. Nat. Rev. Mol. Cell Biol. 14 166–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grayson WL, Bunnell BA, Martin E, Frazier T, Hung BP, Gimble JM 2015 Stromal cells and stem cells in clinical bone regeneration. Nat. Rev. Endocrinol. 11 140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greaves GN, Greer A, Lakes RS, Rouxel T 2011 Poisson’s ratio and modern materials. Nat. Mater. 10 823–837.

    Article  CAS  PubMed  Google Scholar 

  • Groll J, Boland T, Blunk T, Burdick JA, Cho DW, Dalton PD, Derby B, Forgacs G, Li Q, Mironov VA, et al. 2016 Biofabrication: reappraising the definition of an evolving field. Biofabrication 8 013001.

    Article  PubMed  CAS  Google Scholar 

  • Guntur AR, Rosen CJ 2013 Igf-1 regulation of key signaling pathways in bone. BoneKEy Rep. https://doi.org/10.1038/bonekey.2013.171

    Article  PubMed  PubMed Central  Google Scholar 

  • Habibovic P 2017 Strategic directions in osteoinduction and biomimetics. Tissue Eng. Part A 23 1295–1296.

    Article  PubMed  Google Scholar 

  • Hamidouche Z, Fromigué O, Nuber U, Vaudin P, Pages JC, Ebert R, Jakob F, Miraoui H, Marie PJ 2010 Autocrine fibroblast growth factor 18 mediates dexamethasone-induced osteogenic differentiation of murine mesenchymal stem cells. J. Cell. Phys. 224 509–515.

    Article  CAS  Google Scholar 

  • Han HH, Yun S, Won JY, Lee JS, Kim KJ, Park KH, Yun WS, Rhie JW, Shim JH 2018 Orbital wall reconstruction in rabbits using 3D printed polycaprolactone-\(\beta \)-tricalcium phosphate thin membrane. Mater. Lett. 218 280–284.

    Article  CAS  Google Scholar 

  • Heirani-Tabasi A, Toosi S, Mirahmadi M, Mishan MA, Bidkhori HR, Bahrami AR, Behravan J, Naderi-Meshkin H 2017 Chemokine receptors expression in mscs: comparative analysis in different sources and passages. Tissue Eng. Regener. Med. 14 605–615.

    Article  CAS  Google Scholar 

  • Hernández-González AC, Téllez-Jurado L, Rodríguez-Lorenzo LM 2019 Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: a review. Carbohydr. Polym. https://doi.org/10.1016/j.carbpol.2019.115514

    Book  Google Scholar 

  • Hildreth III BE, Werbeck JL, Thudi NK, Deng X, Rosol TJ, Toribio RE 2010 Pthrp 1-141 and 1-86 increase in vitro bone formation. J. Surg. Res. 162 e9–e17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu K, Olsen BR 2016 Osteoblast-derived vegf regulates osteoblast differentiation and bone formation during bone repair. J. Clin. Invest. 126 509–526.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu K, Olsen BR 2017 Vascular endothelial growth factor control mechanisms in skeletal growth and repair. Dev. Dyn. 246 227–234.

    Article  CAS  PubMed  Google Scholar 

  • Hu MC, Shiizaki K, Kuro-o M, Moe OW 2013 Fibroblast growth factor 23 and klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Ann. Rev. Physiol. 75 503–533.

    Article  CAS  Google Scholar 

  • Huang C, Ogawa R 2010 Mechanotransduction in bone repair and regeneration. FASEB J. 24 3625–3632.

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Zhang Q, Scarpa F, Liu Y, Leng J 2017 Shape memory polymer-based hybrid honeycomb structures with zero Poisson’s ratio and variable stiffness. Compos. Struct. 179 437–443.

    Article  Google Scholar 

  • Huang Y, Chen X, Che J, Zhan Q, Ji J, Fan Y 2019 Shear stress promotes arterial endothelium-oriented differentiation of mouse-induced pluripotent stem cells. Stem Cells Int. https://doi.org/10.1155/2019/1847098

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Z, Ren PG, Ma T, Smith RL, Goodman SB 2010 Modulating osteogenesis of mesenchymal stem cells by modifying growth factor availability. Cytokine 51 305–310.

    Article  CAS  PubMed  Google Scholar 

  • Inoue S, Fujikawa K, Matsuki-Fukushima M, Nakamura M 2020 Repair processes of flat bones formed via intramembranous versus endochondral ossification. J. Oral Biosci. 62 52–57.

    Article  PubMed  Google Scholar 

  • Jaidev L, Chatterjee K 2019 Surface functionalization of 3D printed polymer scaffolds to augment stem cell response. Mater. Des. 161 44–54.

    Article  CAS  Google Scholar 

  • Jiao H, Xiao E, Graves DT 2015 Diabetes and its effect on bone and fracture healing. Curr. Osteoporosis Rep. 13 327–335.

    Article  Google Scholar 

  • Kolk A, Handschel J, Drescher W, Rothamel D, Kloss F, Blessmann M, Heiland M, Wolff KD, Smeets R 2012 Current trends and future perspectives of bone substitute materials-from space holders to innovative biomaterials. J. Cranio-Maxillofac. Surg. 40 706–718.

    Article  Google Scholar 

  • Kumar S, Wan C, Ramaswamy G, Clemens TL, Ponnazhagan S 2010 Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect. Mol. Therapy 18 1026–1034.

    Article  CAS  Google Scholar 

  • Kusumbe AP, Ramasamy SK, Adams RH 2014 Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507 323–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanza R, Langer R, Vacanti JP 2011 Principles of tissue engineering. Academic Press, London

    Google Scholar 

  • Le BQ, Nurcombe V, Cool SM, Van Blitterswijk CA, De Boer J, LaPointe VLS 2018 The components of bone and what they can teach us about regeneration. Materials 11 14.

    Article  CAS  Google Scholar 

  • Lee S, Choi D, Shim JH, Nam W 2020 Efficacy of three-dimensionally printed polycaprolactone/beta tricalcium phosphate scaffold on mandibular reconstruction. Sci. Rep. 10 1–9.

    CAS  Google Scholar 

  • Lei M, Hong W, Zhao Z, Hamel C, Chen M, Lu H, Qi HJ 2019 3D printing of auxetic metamaterials with digitally reprogrammable shape. ACS Appl. Mater. Interfaces 11 22768–22776.

    Article  CAS  PubMed  Google Scholar 

  • Lencioni KA, Noritomi PY, Macedo AP, Ribeiro RF, Pereira DAR 2020 Influence of different implants on the biomechanical behavior of a tooth-implant fixed partial dentures: A three-dimensional finite element analysis. J. Oral Implantol. 46 27–34.

  • Li G, Fang Y 2014 Failure mode analysis and performance optimization of the hierarchical corrugated truss structure. Adv. Mech. Eng. 6 251591.

    Article  Google Scholar 

  • Li T, Chen Y, Hu X, Li Y, Wang L 2018 Exploiting negative Poisson’s ratio to design 3d-printed composites with enhanced mechanical properties. Mater. Des. 142 247–258.

    Article  Google Scholar 

  • Lienemann PS, Lutolf MP, Ehrbar M 2012 Biomimetic hydrogels for controlled biomolecule delivery to augment bone regeneration. Adv. Drug Del. Rev. 64 1078–1089.

    Article  CAS  Google Scholar 

  • Lim YW, Kim YS, Lee JW, Kwon SY 2013 Stem cell implantation for osteonecrosis of the femoral head. Exp. Mol. Med. 45 e61–e61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Y, Miao YL, Qin F, Cao C, Yu XL, Wu YH, Wang TL, Xu RG, Zhao L, Wu F, et al. 2019 Electrospun poly (aspartic acid)-modified zein nanofibers for promoting bone regeneration. Int. J. Nanomed. 14 9497.

    Article  CAS  Google Scholar 

  • Manzini BM, Duarte ASS, Sankaramanivel S, Ramos AL, Latuf-Filho P, Escanhoela C, Kharmandayan P, Saad STO, Boin I, Luzo ÂCM 2015 Useful properties of undifferentiated mesenchymal stromal cells and adipose tissue as the source in liver-regenerative therapy studied in an animal model of severe acute fulminant hepatitis. Cytotherapy 17 1052–1065.

    Article  CAS  PubMed  Google Scholar 

  • Maricevich JPBR, Cezar-Junior AB, de Oliveira-Junior EX, Silva JAMV, da Silva JVL, Nunes AA, Almeida NS, Azevedo-Filho HRC 2019 Functional and aesthetic evaluation after cranial reconstruction with polymethyl methacrylate prostheses using low-cost 3D printing templates in patients with cranial defects secondary to decompressive craniectomies: A prospective study. Surg. Neurol. Int.https://doi.org/10.4103/sni.sni_149_18

  • Martin M, Sansalone V, Cooper DM, Forwood MR, Pivonka P 2019 Mechanobiological osteocyte feedback drives mechanostat regulation of bone in a multiscale computational model. Biomech. Model. Mechanobiol. 18 1475–1496.

    Article  PubMed  Google Scholar 

  • Matassi F, Nistri L, Paez DC, Innocenti M 2011 New biomaterials for bone regeneration. Clin. Cases Min. And Bone Metab. 8 21

    Google Scholar 

  • Mattazio RR, Noritomi PY, Silveira ZC 2020 An in silico model for the prediction of changes in mineral density in cortical bone remodeling. J. Biomech. Eng. https://doi.org/10.1115/1.4044094

    Google Scholar 

  • McLaughlin KI, Milne TJ, Zafar S, Zanicotti DG, Cullinan MP, Seymour GJ, Coates DE 2020 The in vitro effect of vegf receptor inhibition on primary alveolar osteoblast nodule formation. Aust. Dent. J. https://doi.org/10.1111/adj.12752

  • Mehta M, Schmidt-Bleek K, Duda GN, Mooney DJ 2012 Biomaterial delivery of morphogens to mimic the natural healing cascade in bone. Adv. Drug Del. Rev. 64 1257–1276.

    Article  CAS  Google Scholar 

  • Meyers MA, McKittrick J, Chen PY 2013 Structural biological materials: critical mechanics–materials connections. Science 339 773–779.

    Article  CAS  PubMed  Google Scholar 

  • Meza LR, Zelhofer AJ, Clarke N, Mateos AJ, Kochmann DM, Greer JR 2015 Resilient 3D hierarchical architected metamaterials. Proc. Natl. Acad. Sci. 112 11502–11507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirzaali M, Caracciolo A, Pahlavani H, Janbaz S, Vergani L, Zadpoor A 2018 Multi-material 3D printed mechanical metamaterials: Rational design of elastic properties through spatial distribution of hard and soft phases. Appl. Phys. Lett. 113 241903.

    Article  CAS  Google Scholar 

  • Oftadeh R, Haghpanah B, Vella D, Boudaoud A, Vaziri A 2014 Optimal fractal-like hierarchical honeycombs. Phys. Rev. Lett. 113 104301.

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulou A, Laucks J, Tibbits S 2017 Auxetic materials in design and architecture. Nat. Rev Mater. 2 1–3.

    Article  CAS  Google Scholar 

  • Park J, Sutradhar A, Shah JJ, Paulino GH 2018 Design of complex bone internal structure using topology optimization with perimeter control. Comput. Biol. Med. 94 74–84.

    Article  PubMed  Google Scholar 

  • Park SH, Park JY, Ji YB, Ju HJ, Min BH, Kim MS 2020 An injectable click-crosslinked hyaluronic acid hydrogel modified with a bmp-2 mimetic peptide as a bone tissue engineering scaffold. Acta Biomater. 10.1016/j.actbio.2020.09.013

    Article  PubMed  PubMed Central  Google Scholar 

  • Pereira H, Cengiz I, Maia F, Bartolomeu F, Oliveira J, Reis R, Silva F 2020 Physicochemical properties and cytocompatibility assessment of non-degradable scaffolds for bone tissue engineering applications. J. Mech. Behav. Biomed. Mater. 112 103997.

    Article  CAS  PubMed  Google Scholar 

  • Poniatowski ŁA, Wojdasiewicz P, Gasik R, Szukiewicz D 2015 Transforming growth factor beta family: insight into the role of growth factors in regulation of fracture healing biology and potential clinical applications. Med. Inflam. https://doi.org/10.1155/2015/1378231

    Book  Google Scholar 

  • Pool LR, Wolf M 2017 Fgf23 and nutritional metabolism. Ann. Rev. Nutr. 37 247–268.

    Article  CAS  Google Scholar 

  • Qayoom I, Raina DB, Širka A, Tarasevičius Š, Tägil M, Kumar A, Lidgren L 2018 Anabolic and antiresorptive actions of locally delivered bisphosphonates for bone repair: a review. Bone Joint Res. 7 548–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qayoom I, Teotia AK, Kumar A 2019 Nanohydroxyapatite based ceramic carrier promotes bone formation in a femoral neck canal defect in osteoporotic rats. Biomacromolecules 21 328–337.

    Article  PubMed  CAS  Google Scholar 

  • Qayoom I, Teotia AK, Meena M, Singh P, Mishra A, Singh S, Kumar A (2020a) Enhanced bone mineralization using hydroxyapatite-based ceramic bone substitute incorporating withania somnifera extracts. Biomed. Mater. (Bristol) 15 055015.

    Article  CAS  Google Scholar 

  • Qayoom I, Verma R, Murugan PA, Raina DB, Teotia AK, Matheshwaran S, Nair NN, Tägil M, Lidgren L, Kumar A (2020b) A biphasic nanohydroxyapatite/calcium sulphate carrier containing rifampicin and isoniazid for local delivery gives sustained and effective antibiotic release and prevents biofilm formation. Sci. Rep. 10 1–14.

    Article  CAS  Google Scholar 

  • Quiles JL, Forteza-López A, Montiel M, de Arriba CC, Hernández JAFT, Tresguerres IF 2019 Effects of locally applied insulin-like growth factor-i on osseointegration. Med. Oral Patol. Oral Cirugía Bucal Ed Inglesa 24 11.

  • Rafsanjani A, Pasini D 2016 Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs. Extreme Mech. Lett. 9 291–296.

    Article  Google Scholar 

  • Raina DB, Isaksson H, Teotia AK, Lidgren L, Tägil M, Kumar A 2016 Biocomposite macroporous cryogels as potential carrier scaffolds for bone active agents augmenting bone regeneration. J. Control. Rel. 235 365–378.

    Article  CAS  Google Scholar 

  • Raina DB, Larsson D, Mrkonjic F, Isaksson H, Kumar A, Lidgren L, Tägil M 2018 Gelatin-hydroxyapatite-calcium sulphate based biomaterial for long term sustained delivery of bone morphogenic protein-2 and zoledronic acid for increased bone formation: in-vitro and in-vivo carrier properties. J. Control. Rel. 272 83–96.

    Article  CAS  Google Scholar 

  • Raina DB, Qayoom I, Larsson D, Zheng MH, Kumar A, Isaksson H, Lidgren L, Tägil M 2019 Guided tissue engineering for healing of cancellous and cortical bone using a combination of biomaterial based scaffolding and local bone active molecule delivery. Biomaterials 188 38–49.

    Article  CAS  PubMed  Google Scholar 

  • Raina DB, Sirka A, Qayoom I, Teotia AK, Liu Y, Tarasevicius S, Tanner KE, Isaksson H, Kumar A, Tägil M, et al. 2020 Long term response to a bioactive biphasic biomaterial in the femoral neck of osteoporotic rats. Tissue Eng. J. https://doi.org/10.1089/ten.TEA.2020.0018

  • Rayneau-Kirkhope D, Mao Y, Farr R (2012a) Ultralight fractal structures from hollow tubes. Phys. Rev. Lett. 109 204301.

    Article  PubMed  CAS  Google Scholar 

  • Rayneau-Kirkhope D, Mao Y, Farr R, Segal J (2012b) Hierarchical space frames for high mechanical efficiency: Fabrication and mechanical testing. Mech. Res. Commun. 46 41–46.

    Article  Google Scholar 

  • Rayneau-Kirkhope D, Mao Y, Farr R 2013 Optimization of fractal space frames under gentle compressive load. Phys. Rev. E 87 063204.

    Article  CAS  Google Scholar 

  • Ren X, Das R, Tran P, Ngo TD, Xie YM 2018 Auxetic metamaterials and structures: a review. Smart Mater. Struct. 27 023001.

    Article  Google Scholar 

  • Richter B, Faul C 2018 Fgf23 actions on target tissues—with and without klotho. Front. Endocrinol. 9 189.

    Article  Google Scholar 

  • Rohman G, Langueh C, Ramtani S, Lataillade JJ, Lutomski D, Senni K, Changotade S 2019 The use of platelet-rich plasma to promote cell recruitment into low-molecular-weight fucoidan-functionalized poly (ester-urea-urethane) scaffolds for soft-tissue engineering. Polymers 11 1016.

    Article  CAS  PubMed Central  Google Scholar 

  • Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, Grigolo B 2017 Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater. Sci. Eng. C 78 1246–1262.

    Article  CAS  Google Scholar 

  • Rouxel T, Ji H, Guin J, Augereau F, Rufflé B 2010 Indentation deformation mechanism in glass: densification versus shear flow. J. Appl. Phys. 107 094903.

    Article  CAS  Google Scholar 

  • Saska S, Pires LC, Cominotte MA, Mendes LS, de Oliveira MF, Maia IA, da Silva JVL, Ribeiro SJL, Cirelli JA 2018 Three-dimensional printing and in vitro evaluation of poly (3-hydroxybutyrate) scaffolds functionalized with osteogenic growth peptide for tissue engineering. Mater. Sci. Eng. C 89 265–273.

    Article  CAS  Google Scholar 

  • Schett G 2011 Effects of inflammatory and anti-inflammatory cytokines on the bone. Eur. J. Clin. Invest. 41 1361–1366.

    Article  CAS  PubMed  Google Scholar 

  • Shang F, Yu Y, Liu S, Ming L, Zhang Y, Zhou Z, Zhao J, Jin Y 2020 Advancing application of mesenchymal stem cell-based bone tissue regeneration. Bioactive Mater. 6 666–683.

    Article  Google Scholar 

  • Shen B, Wei A, Whittaker S, Williams LA, Tao H, Ma DD, Diwan AD 2010 The role of bmp-7 in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells in vitro. J. Cell. Biochem. 109 406–416.

    CAS  PubMed  Google Scholar 

  • Shi HX, Lin C, Lin BB, Wang ZG, Zhang HY, Wu FZ, Cheng Y, Xiang LJ, Guo DJ, Luo X, et al. 2013 The anti-scar effects of basic fibroblast growth factor on the wound repair in vitro and in vivo. PLoS ONE. https://doi.org/10.1371/journal.pone.0059966

    Article  PubMed  PubMed Central  Google Scholar 

  • Shim JH, Huh JB, Park JY, Jeon YC, Kang SS, Kim JY, Rhie JW, Cho DW 2013 Fabrication of blended polycaprolactone/poly (lactic-co-glycolic acid)/\(\beta \)-tricalcium phosphate thin membrane using solid freeform fabrication technology for guided bone regeneration. Tissue Eng. Part A 19 317–328.

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui JA, Partridge NC 2016 Physiological bone remodeling: systemic regulation and growth factor involvement. Physiology 31 233–245.

    Article  CAS  PubMed  Google Scholar 

  • da Silva JVL, Martins TACP, Noritomi PY 2012 Scaffold informatics and biomimetic design: three-dimensional medical reconstruction. In: Computer-Aided Tissue Engineering, Springer, pp 91–109. https://doi.org/10.1007/978-1-61779-764-4_6

  • Singh S, Gupta A, Qayoom I, Teotia AK, Gupta S, Padmanabhan P, Dev A, Kumar A 2020 Biofabrication of gold nanoparticles with bone remodeling potential: an in vitro and in vivo assessment. J. Nanopart. Res. 22 152.

    Article  CAS  Google Scholar 

  • Sirandoni D, Leal E, Weber B, Noritomi PY, Fuentes R, Borie E 2019 Effect of different framework materials in implant-supported fixed mandibular prostheses: A finite element analysis. Int. J. Oral Maxillofac. Implants 34 6

    Article  Google Scholar 

  • Steffens D, Alvarenga Rezende R, Santi B, Alencar de Sena Pereira FD, Inforcatti Neto P, Lopes da Silva JV, Pranke P 2016 3d-printed pcl scaffolds for the cultivation of mesenchymal stem cells. J. Appl. Biomater. Funct. Mater. 14 19–25.

    Google Scholar 

  • Študent V, Andrỳs C, Souček O, Špaček J, Tošner J, Sedláková I 2018 Importance of basal fibroblast growth factor levels in patients with ovarian tumor. Ceska Gynekol. 83 169–176

    PubMed  Google Scholar 

  • Sutradhar A, Park J, Carrau D, Nguyen TH, Miller MJ, Paulino GH 2016 Designing patient-specific 3D printed craniofacial implants using a novel topology optimization method. Med. Biol. Eng. Comput. 54 1123–1135.

    Article  PubMed  Google Scholar 

  • Tang W, Lin D, Yu Y, Niu H, Guo H, Yuan Y, Liu C 2016 Bioinspired trimodal macro/micro/nano-porous scaffolds loading rhbmp-2 for complete regeneration of critical size bone defect. Acta Biomater. 32 309–323.

    Article  CAS  PubMed  Google Scholar 

  • Teotia AK, Gupta A, Raina DB, Lidgren L, Kumar A 2016 Gelatin-modified bone substitute with bioactive molecules enhance cellular interactions and bone regeneration. ACS Appl. Mater. Interfaces 8 10775–10787.

    Article  CAS  PubMed  Google Scholar 

  • Teotia AK, Qayoom I, Kumar A 2018 Endogenous platelet-rich plasma supplements/augments growth factors delivered via porous collagen-nanohydroxyapatite bone substitute for enhanced bone formation. ACS Biomater. Sci. Eng. 5 56–69.

    Article  PubMed  CAS  Google Scholar 

  • Teotia AK, Raina DB, Isaksson H, Tägil M, Lidgren L, Seppälä J, Kumar A 2019 Composite bilayered scaffolds with bio-functionalized ceramics for cranial bone defects: An in vivo evaluation. Multifunct. Mater. 2 014002.

    Article  CAS  Google Scholar 

  • Toosi S, Behravan J 2019 Osteogenesis and bone remodeling: A focus on growth factors and bioactive peptides. BioFactors. https://doi.org/10.1002/biof.1598

    Article  PubMed  Google Scholar 

  • Vaca-González J, Moncayo-Donoso M, Guevara J, Hata Y, Shefelbine S, Garzón-Alvarado D 2018 Mechanobiological modeling of endochondral ossification: an experimental and computational analysis. Biomech. Model. Mechanobiol. 17 853–875.

    Article  PubMed  Google Scholar 

  • Wang ZG, Wang Y, Huang Y, Lu Q, Zheng L, Hu D, Feng WK, Liu YL, Ji KT, Zhang HY, et al. 2015 bfgf regulates autophagy and ubiquitinated protein accumulation induced by myocardial ischemia/reperfusion via the activation of the pi3k/akt/mtor pathway. Sci. Rep. 5 1–12.

    Google Scholar 

  • Wei K, Chen H, Pei Y, Fang D 2016 Planar lattices with tailorable coefficient of thermal expansion and high stiffness based on dual-material triangle unit. J. Mech. Phys. Solids 86 173–191.

    Article  Google Scholar 

  • Willie BM, Birkhold AI, Razi H, Thiele T, Aido M, Kruck B, Schill A, Checa S, Main RP, Duda GN 2013 Diminished response to in vivo mechanical loading in trabecular and not cortical bone in adulthood of female c57bl/6 mice coincides with a reduction in deformation to load. Bone 55 335–346.

    Article  PubMed  Google Scholar 

  • Worthley DL, Churchill M, Compton JT, Tailor Y, Rao M, Si Y, Levin D, Schwartz MG, Uygur A, Hayakawa Y, et al. 2015 Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell 160 269–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Li B, Zhou J 2016 Isotropic negative thermal expansion metamaterials. ACS Appl. Mater. Interfaces 8 17721–17727.

    Article  CAS  PubMed  Google Scholar 

  • Xiao W, Wang Y, Pacios S, Li S, Graves DT 2016 Cellular and molecular aspects of bone remodeling. In: Tooth Movement, vol 18, Karger Publishers, pp 9–16. https://doi.org/10.1159/000351895

  • Zadpoor AA 2016 Mechanical meta-materials. Mater. Horizons 3 371–381.

    CAS  Google Scholar 

  • Zhang H, Guo X, Wu J, Fang D, Zhang Y 2018 Soft mechanical metamaterials with unusual swelling behavior and tunable stress—strain curves. Sci. Adv. 4 eaar8535, https://doi.org/10.1126/sciadv.aar8535

  • Zhang HY, Zhang X, Wang ZG, Shi HX, Wu FZ, Lin BB, Xu XL, Wang XJ, Fu XB, Li ZY, et al. 2013 Exogenous basic fibroblast growth factor inhibits er stress-induced apoptosis and improves recovery from spinal cord injury. CNS Neurosci. Therapeut. 19 20–29.

    Article  CAS  Google Scholar 

  • Zhao Hy, Wu J, Zhu Jj, Xiao Zc, He Cc, Shi Hx, Li Xk, Yang Sl, Xiao J 2015 Research advances in tissue engineering materials for sustained release of growth factors. Biomed. Res. Inter. https://doi.org/10.1155/2015/808202

    Book  Google Scholar 

  • Zhao Z, Zhao Q, Gu B, Yin C, Shen K, Tang H, Xia H, Zhang X, Zhao Y, Yang X, et al. 2020 Minimally invasive implantation and decreased inflammation reduce osteoinduction of biomaterial. Theranostics 10 3533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JH, Zhang WH, Xia L 2016 Topology optimization in aircraft and aerospace structures design. Arch. Comput. Methods Eng. 23 595–622.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Otávio Henrique Junqueira Amorim for the figures design support, Dr. José Luis Dávila Sánchez for the critical reading of this manuscript, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil).

BMM expresses thanks for the institutional training scholarship No. 305524/2019-4 from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bruna Maria Manzini or Jorge Vicente Lopes da Silva.

Additional information

Corresponding editor: Shamik Sen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzini, B.M., Machado, L.M.R., Noritomi, P.Y. et al. Advances in Bone tissue engineering: A fundamental review. J Biosci 46, 17 (2021). https://doi.org/10.1007/s12038-020-00122-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-020-00122-6

Keywords

Navigation