Skip to main content
Log in

From aneuploidy to cancer: The evolution of a new species?

  • Commentary
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that CSC is a subtype of the evolutionary species concept (ESC) which states species as ‘an entity composed of organisms which maintains its identity from other such entities through time and over space, and which has its own independent evolutionary fate and historical tendencies’ (Mayden 1997).

References

  • Artandi S, Chang S, Lee S, Alson S, Gottlieb G, Chin L and DePinho R 2000 Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406 641–645

    Article  PubMed  CAS  Google Scholar 

  • Atwood KC, Schneider LK and Ryan FJ 1951 Periodic selection in Escherichia coli. Proc. Natl. Acad. Sci. USA 37 146–155

  • Bannon JH and Mc Gee MM 2009 Understanding the role of aneuploidy in tumorigenesis. Biochem. Soc. Trans. 37 910–913

    Article  PubMed  CAS  Google Scholar 

  • Basto R, Brunk K, Vinadogrova T, Peel N, Franz A, Khodjakov A and Raff JW 2008 Centrosome amplification can initiate tumorigenesis in flies. Cell 133 1032–1042

    Article  PubMed  CAS  Google Scholar 

  • Bishop JM 1995 Cancer: the rise of the genetic paradigm. Genes Dev. 9 1309–1315

    Google Scholar 

  • Boveri T 1914 Zur Frage der Entstehung maligner tumoren (Jena: Gustav Fischer Verlag)

    Google Scholar 

  • Bozic I, Antal T, Ohtsuki H, Carter H, Kim D, Chen S, Karchin R, Kinzler KW, Vogelstein B and Nowak MA 2010 Accumulation of driver and passenger mutations during tumor progression. Proc. Natl. Acad. Sci. USA 107 18545–18550

  • Castellanos E, Dominguez P and Gonzalez C 2008 Centrosome dysfunction in Drosophila neural stem cells causes tumors that are not due to genome instability. Curr. Biol. 18 1209–1214

    Article  PubMed  CAS  Google Scholar 

  • Chadeneau C, Hay K, Hirte H, Gallinger S and Bacchetti S 1995 Telomerase Activity associated with acquisition of malignancy in human colorectal-cancer. Cancer Res. 55 2533–2536

    Google Scholar 

  • Chi Y-H and Jeang K-T 2007 Aneuploidy and cancer. J. Cell Biochem. 102 531–538

    Google Scholar 

  • Cohan FM 2001 Bacterial species and speciation. Syst. Biol. 50 513–524

    Article  PubMed  CAS  Google Scholar 

  • Cohan FM 2002 What are bacterial species? Annu. Rev. Microbiol. 56 457–487

    Article  PubMed  CAS  Google Scholar 

  • Copper HL, Mackay CM and Banfield WG 1964 Chromosome studies of a contagious reticulum cell sarcoma of the Syrian hamster. J. Natl. Cancer Inst .33 691–706

    Google Scholar 

  • de Queiroz K 2005 Ernst Mayr and the modern concept of species. Proc. Natl. Acad. Sci. USA 102 Suppl 1 6600–6607

    Article  PubMed  Google Scholar 

  • Dingli D and Nowak MA 2006 Cancer biology: infectious tumour cells. Nature 443 35–36

    Article  PubMed  CAS  Google Scholar 

  • Doolittle WF and Papke RT 2006 Genomics and the bacterial species problem. Genome Biol. 7 116

    Google Scholar 

  • Duesberg P and Rasnick D 2000 Aneuploidy, the somatic mutation that makes cancer a species of its own. Cell Motil. Cytoskeleton 47 81–107

    Google Scholar 

  • Duesberg P, Fabarius A and Hehlmann R 2004 Aneuploidy, the primary cause of the multilateral genomic instability of neoplastic and preneoplastic cells. Iubmb Life 56 65–81

    Article  PubMed  CAS  Google Scholar 

  • Duesberg P, Li R, Fabarius A and Hehlmann R 2006 Aneuploidy and cancer: from correlation to causation. Contrib. Microbiol. 13 16–44

    Article  PubMed  Google Scholar 

  • Duesberg P, Li R, Rasnick D, Rausch C, Willer A, Rausch C and Hehlmann R 2000 Aneuploidy precedes and segregates with chemical carcinogenesis. Cancer Genet. Cytogen. 119 83–93

  • Duesberg P, Mandrioli D, McCormack A and Nicholson JM 2011 Is carcinogenesis a form of speciation? Cell Cycle 10 2100–2114

    Article  PubMed  CAS  Google Scholar 

  • Dunham MJ, Badrane H, Ferea T, Adams J, Brown PO, Rosenzweig F and Botstein D 2002 Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 99 16144–16149

    Google Scholar 

  • Eldredge N and Gould S 1972 Punctuated equilibria: an alternative to phyletic gradualism; in Models in paleobiology (ed) TJM Schopf (Freeman, Cooper & Co, San Francisco) pp 82–115

  • Ferea TL, Botstein D, Brown PO and Rosenzweig RF 1999 Systematic changes in gene expression patterns following adaptive evolution in yeast. Proc. Natl. Acad. Sci. USA 96 9721–9726

    Google Scholar 

  • Fukasawa K, Choi T, Kuriyama R, Rulong S and Vande Woude GF 1996 Abnormal centrosome amplification in the absence of p53. Science 271 1744–1747

    Article  PubMed  CAS  Google Scholar 

  • Gartler SM 1968 Apparent Hela cell contamination of human heteroploid cell lines. Nat. News 217 750–751

    Google Scholar 

  • Goodfellow M, Manfio G and Chun J 1997 Towards a practical species concept for cultivable bacteria; in Species: The units of biodiversity (London: Chapman & Hall) pp 25–59

  • Gresham D, Desai MM, Tucker CM, Jenq HT, Pai DA, Ward A, DeSevo CG, Botstein D and Dunham MJ 2008 The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet. 4 e1000303

  • Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW and Weinberg RA 1999 Creation of human tumour cells with defined genetic elements. Nat. News 400 464–468

    Google Scholar 

  • Hanahan D and Weinberg RA 2000 The hallmarks of cancer. Cell 100 57–70

    Article  PubMed  CAS  Google Scholar 

  • Hansemann D 1897 Die mikroscopische Diagnose der bösartigen Geschwülste (Berlin: August Hirschwald)

    Google Scholar 

  • Hauschka TS 1961 The chromosomes in ontogeny and oncogeny. Cancer Res. 21 957–974

    Google Scholar 

  • Hauser G 1903 Giebt es eine primaere zur Geschwulstbildung fuehrende Epithelerkrankung? Ein Beitrag zur Geschwulstlehre. Beitr. Path. Anat. Allg. Path. 33 1–31

    Google Scholar 

  • Heneen WK 1976 HeLa cells and their possible contamination of other cell lines: karyotype studies. Hereditas 82 217–248

    Article  PubMed  CAS  Google Scholar 

  • Huxley J 1956 Cancer Biology: Comparative and genetic. Biol. Rev. 31 474–513

    Article  Google Scholar 

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D 2011 Global cancer statistics. CA Cancer J. Clin. 61 69–90

  • King M 1987 Chromosomal rearrangements, speciation and the theoretical approach. Heredity 59 1–6

    Article  PubMed  Google Scholar 

  • Klein A, Li N, Nicholson JM, McCormack AA, Graessmann A and Duesberg P 2010 Transgenic oncogenes induce oncogene-independent cancers with individual karyotypes and phenotypes. Cancer Genet. Cytogen. 200 79–99

    Google Scholar 

  • Klein A, Wessel R, Graessmann M, Jürgens M, Petersen I, Schmutzler R, Niederacher D, Arnold N, et al. 2007 Comparison of gene expression data from human and mouse breast cancers: identification of a conserved breast tumor gene set. Int. J. Cancer 121 683–688

    Google Scholar 

  • Konstantinidis KT, Ramette A and Tiedje JM 2006 The bacterial species definition in the genomic era. Philos. Trans. R. Soc. London, B Biol. Sci. 361 1929–1940

    Google Scholar 

  • Kops GJ, Weaver BA and Cleveland DW 2005 On the road to cancer: aneuploidy and the mitotic checkpoint. Nat. Rev. Cancer 5 773–785

    Google Scholar 

  • Li M and Zhang P 2009 Spindle assembly checkpoint, aneuploidy and tumorigenesis. Cell Cycle 8 3440

    Google Scholar 

  • Li R, Sonik A, Stindl R, Rasnick D and Duesberg P 2000 Aneuploidy vs. gene mutation hypothesis of cancer: recent study claims mutation but is found to support aneuploidy. Proc. Natl. Acad. Sci. USA 97 3236–3241

    Google Scholar 

  • Li R, Yerganian G, Duesberg P, Kraemer A, Willer A, Rausch C and Hehlmann R 1997 Aneuploidy correlated 100% with chemical transformation of Chinese hamster cells. Proc. Natl. Acad. Sci. USA 94 14506–14511

    Google Scholar 

  • Lingle WL, Lutz WH, Ingle JN, Maihle NJ, and Salisbury JL 1998 Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc. Natl. Acad. Sci. USA 95 2950–2955

    Google Scholar 

  • Linnaeus C 1767 Systema naturae 12th edition (Stockholm: Laurentius Salvius)

  • Matthey R 1973 The chromosome formulae of eutherian mammals; in Cytotaxonomy and vertebrate evolution (eds) AB Chiarelli and E Capanna (New York: Academic Press) pp 531–616

  • Mayden R 1997 A hierarchy of species concepts: the denouement in the saga of the species problem; in Species: The units of biodiversity (eds) MF Claridge, AH Dawah and MR Wilson (London: Chapman & Hall) pp 380–424

  • Mayer F, Stoop H, Sen S, Bokemeyer C, Oosterhuis JW and Looijenga LH 2003 Aneuploidy of human testicular germ cell tumors is associated with amplification of centrosomes. Oncogene 22 3859–3866

    Article  PubMed  CAS  Google Scholar 

  • Mayr E 1963 Animal species and evolution (Cambridge: Belknap Press/Harvard University Press)

    Google Scholar 

  • Mayr E 1942 Systematics and the origin of species (New York: Harvard University Press)

    Google Scholar 

  • Merlo L, Pepper J, Reid B and Maley C 2006 Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6 924–935

    Google Scholar 

  • Michor F, Iwasa Y, Vogelstein B, Lengauer C and Nowak MA 2005 Can chromosomal instability initiate tumorigenesis? Semin. Cancer Biol. 15 43–49

    Google Scholar 

  • Murgia C, Pritchard JK, Kim SY, Fassati A and Weiss RA 2006 Clonal origin and evolution of a transmissible cancer. Cell 126 477–487

    Article  PubMed  CAS  Google Scholar 

  • Murray M, James ZH and Martin WB 1969 A study of the cytology and karyotype of the canine transmissible venereal tumour. Res. Vet. Sci. 10 565–568

    PubMed  CAS  Google Scholar 

  • Nelson-Rees WA, Hunter L, Darlington GJ and O'Brien SJ 1980 Characteristics of HeLa strains: permanent vs. variable features. Cytogenet. Cell Genet. 27 216–231

    Google Scholar 

  • Nowell PC 1976 The clonal evolution of tumor cell populations. Science 194 23–28

    Article  PubMed  CAS  Google Scholar 

  • O'Brien SJ, Menotti-Raymond M, Murphy WJ, Nash WG, Wienberg J, Stanyon R, Copeland NG, Jenkins NA, Womack JE and Marshall Graves JA 1999 The promise of comparative genomics in mammals. Science 286 458–62, 479–81

    Google Scholar 

  • Oshimura M, Sasaki M, and Makino S 1973 Chromosomal banding patterns in primary and transplanted venereal tumors of the dog. J. Natl. Cancer Inst. 51 1197–1203

  • Pathak S and Multani AS 2006 Aneuploidy, stem cells and cancer. EXS 2006 49–64

    Google Scholar 

  • Pathak S 1990 Chromosome alterations in speciation and neoplastic transformation: a parallelism; in Trends in chromosome research (ed) T Sharma (New Delhi: Springer Verlag, Narosa Publishing House) pp 204–220

  • Pearse A-M and Swift K 2006 Allograft theory: transmission of devil facial-tumour disease. Nature 439 549

    Google Scholar 

  • Pihan G and Doxsey SJ 2003 Mutations and aneuploidy: co-conspirators in cancer? Cancer Cell 4 89–94

    Article  PubMed  CAS  Google Scholar 

  • Rebbeck CA, Thomas R, Breen M, Leroi AM and Burt A 2009 Origins and evolution of a transmissible cancer. Evolution 63 2340–2349

    Article  PubMed  CAS  Google Scholar 

  • Rokas A 2008 The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu. Rev. Genet. 42 235–251

    Article  PubMed  CAS  Google Scholar 

  • Rous P 1959 Surmise and fact on the nature of cancer. Nature 183 1357–1361

    Article  PubMed  CAS  Google Scholar 

  • Rubin LL and de Sauvage FJ 2006 Targeting the Hedgehog pathway in cancer. Nat. Rev. Drug Discovery 5 1026–1033

    Google Scholar 

  • Schneider BL and Kulesz-Martin M 2004 Destructive cycles: the role of genomic instability and adaptation in carcinogenesis. Carcinogenesis 25 2033–2044

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt E and Goebel B 1994 Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44 846–849

    Article  CAS  Google Scholar 

  • Steinberg D 2004 Appraising aneuploidy as a cancer cause - A conference considers a theory that blames tumorigenesis on chromosomal gains and losses. Scientist 18 26–27

    Google Scholar 

  • Stemmler MP 2008 Cadherins in development and cancer. Mol. Biosyst. 4 835–850

    Article  PubMed  CAS  Google Scholar 

  • Stewénius Y, Gorunova L, Jonson T, Larsson N, Höglund M, Mandahl N, Mertens F, Mitelman F and Gisselsson D 2005 Structural and numerical chromosome changes in colon cancer develop through telomere-mediated anaphase bridges, not through mitotic multipolarity. Proc. Natl. Acad. Sci. USA 102 5541–5546

    Google Scholar 

  • Stindl R 2008 Defining the steps that lead to cancer: replicative telomere erosion, aneuploidy and an epigenetic maturation arrest of tissue stem cells. Med. Hypotheses 71 126–140

    Google Scholar 

  • Storchova Z and Pellman D 2004 From polyploidy to aneuploidy, genome instability and cancer. Nat. Rev. Mol. Cell Biol. 5 45–54

    Google Scholar 

  • Templeton A 1989 The meaning of species and speciation: a genetic perspective; in Speciation and its consequences (eds) D Otte and JA Endler (Sunderland, MA: Sinauer Associates, Inc) pp 3–27

  • The World Health Organization 2008 The global burden of disease: 2004 update (Geneva: The World Health Organization)

    Google Scholar 

  • Van Valen L 1991 HeLa, a new microbial species. Evolutionary Theory 10 71–74

    Google Scholar 

  • Vincent MD 2010 The animal within: carcinogenesis and the clonal evolution of cancer cells are speciation events sensu stricto. Evolution 64 1173–1183

    Article  PubMed  Google Scholar 

  • Virchow R 1863 Cellular pathology as based upon physiological and pathological histology, 20 Lectures delivered in the Pathological Institute of Berlin, during the months of February, March and April 1858 (Philadelphia: JB Lippincott and Co)

    Google Scholar 

  • Virchow R 1859 Die Cellularpathologie in Ihrer Begründung Auf Physiologische und Pathologische Gewebelehre 2nd edition (Berlin: Verlag von August Hirschwald)

    Google Scholar 

  • Vogelstein B and Kinzler KW 1993 The multistep nature of cancer. Trends Genet. 9 138–141

    Google Scholar 

  • Wayne L, Brenner D, Colwell R, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, et al. 1987 Report of the ad-hoc-committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37 463–464

    Article  Google Scholar 

  • Weber WT, Nowell PC and Hare WC 1965 Chromosome studies of a transplanted and a primary canine venereal sarcoma. J. Natl. Cancer Inst. 35 537–547

    Google Scholar 

  • White MJD 1978 Modes of speciation (San Francisco: WH Freeman and Co)

    Google Scholar 

  • Yosida TH 1973 Evolution of karyotypes and differentiation in 13 Rattus species. Chromosoma 40 285–297

    Article  Google Scholar 

  • Yosida TH 1983 Karyotype evolution and tumor development. Cancer Genet. Cytogen. 8 153–179

Download references

Acknowledgements

We gratefully acknowledge the support of Franziska Miller for editing the English version and critical discussions of this manuscript. We thank Peter Duesberg for inspiring us to do this work and his general advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Klein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knauss, S., Klein, A. From aneuploidy to cancer: The evolution of a new species?. J Biosci 37, 211–220 (2012). https://doi.org/10.1007/s12038-012-9199-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-012-9199-1

Keywords

Navigation