Skip to main content
Log in

Interaction of 18-residue peptides derived from amphipathic helical segments of globular proteins with model membranes

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

We investigated the interaction of six 18-residue peptides derived from amphipathic helical segments of globular proteins with model membranes. The net charge of the peptides at neutral pH varies from −1 to +6. Circular dichroism spectra indicate that peptides with a high net positive charge tend to fold into a helical conformation in the presence of negatively charged lipid vesicles. In helical conformation, their average hydrophobic moment and hydrophobicity would render them surface-active. The composition of amino acids on the polar face of the helix in the peptides is considerably different. The peptides show variations in their ability to permeabilise zwitterionic and anionic lipid vesicles. Whereas increased net positive charge favours greater permeabilisation, the distribution of charged residues in the polar face also plays a role in determining membrane activity. The distribution of amino acids in the polar face of the helix in the peptides that were investigated do not fall into the canonical classes described. Amphipathic helices, which are part of proteins, with a pattern of amino acid distribution different from those observed in class L, A and others, could help in providing newer insights into peptide-membrane interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CD:

circular dichroism

HPLC:

high-performance liquid chromatography

LUV:

large unilamellar vesicles

MRE:

mean residue ellipticity

naf:

normal accessibility factor

NBS:

N-bromosuccinimide

PC:

1-palmitoyl-2-oleoyl-sn-glycerophosphocholine

PDB:

Protein Data Bank

PG:

1-palmitoyl-2-oleoyl-sn-glycerophosphoglycerol

P/L:

peptide:lipid

SUV:

small unilamellar vesicles

References

  • Agawa Y, Lee S, Ono S, Aoyagi H, Ohno M, Taniguchi T, Anzai K and Kirino Y 1991 Interaction with phospholipid bilayers, ion channel formation, and antimicrobial activity of basic amphipathic alpha-helical model peptides of various chain lengths; J. Biol. Chem. 266 20218–20222

    PubMed  CAS  Google Scholar 

  • Arbuzova A and Schwarz G 1999 Pore-forming action of mastoparan peptides on liposomes: a quantitative analysis; Biochim. Biophys. Acta 1420 139–152

    Article  PubMed  CAS  Google Scholar 

  • Atherton E and Sheppard R C 1989 Solid phase synthesis. A practical approach (Oxford: IRL press)

    Google Scholar 

  • Benachir T and Lafleur M 1995 Study of vesicle leakage induced by melittin; Biochim. Biophys. Acta 1235 452–460

    Article  PubMed  Google Scholar 

  • Blondelle S E and Houghten R A 1992 Design of model amphipathic peptides having potent antimicrobial activities; Biochemistry 31 12688–12694

    Article  PubMed  CAS  Google Scholar 

  • Cornell R B and Taneva S G 2006 Amphipathic helices as mediators of the membrane interaction of amphitropic proteins, and as modulators of bilayer physical properties; Curr. Protein Pept. Sci. 6 539–552

    Article  Google Scholar 

  • Dathe M, Schumann M, Wieprecht T, Winkler A, Beyermann M, Krause E, Matsuzaki K, Murase O and Bienert M 1996 Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes; Biochemistry 35 12612–12622

    Article  PubMed  CAS  Google Scholar 

  • Degrado W F, Kezdy F J and Kaiser E T 1981 Design, synthesis and characterization of a cytotoxic peptide with melittin-like activity; J. Am. Chem. Soc. 103 679–681

    Article  CAS  Google Scholar 

  • Dempsey C E 1990 The actions of melittin on membranes; Biochim. Biophys. Acta 1031 143–161

    PubMed  CAS  Google Scholar 

  • Eisenberg D, Weiss R M and Terwilliger T C 1982a The helical hydrophobic moment: a measure of amphiphilicity of a helix; Nature (London) 299 371–374

    Article  CAS  Google Scholar 

  • Eisenberg D, Weiss R M, Terwilliger T C and Wilcox W 1982b Hydrophobic moments and protein structure; Faraday Symp. Chem. Soc. 17 109–120

    Article  Google Scholar 

  • Epand R M, Shai Y, Segrest J P and Anantharamiah G M 1995 Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides; Biopolymers 37 319–338

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Vidal M, Jayasinghe S, Ladokhin A S and White S H 2007 Folding amphipathic helices into membranes: amphiphilicity trumps hydrophobicity; J. Mol. Biol. 370 459–470

    Article  PubMed  CAS  Google Scholar 

  • Giangaspero A, Sandri L and Tossi A 2001 Amphipathic α-helical antimicrobial peptides; Eur. J. Biochem. 268 5589–5600

    Article  PubMed  CAS  Google Scholar 

  • Huang E S, Subbiah S and Levitt M 1995 Recognizing native folds by the arrangement of hydrophobic and polar residues; J. Mol. Biol. 252 709–720

    Article  PubMed  CAS  Google Scholar 

  • Johnson J E and Cornell R B 1999 Amphitropic proteins: regulation by reversible membrane interactions; Mol. Membr. Biol. 16 217–235

    Article  PubMed  CAS  Google Scholar 

  • Kaiser E T and Kezdy F J 1984 Amphiphilic secondary structure: design of peptide hormones; Science 223 249–255

    Article  PubMed  CAS  Google Scholar 

  • Kaiser E T and Kezdy F J 1987 Peptides with affinity for membranes; Ann. Rev. Biophys. Biophyschem. 16 561–581

    CAS  Google Scholar 

  • Kiyota T, Lee S and Sugihara G 1996 Design and synthesis of amphiphilic alpha-helical model peptides with systematically varied hydrophobic-hydrophilic balance and their interaction with lipid- and bio-membranes; Biochemistry 35 13196–13204

    Article  PubMed  CAS  Google Scholar 

  • Ladokhin A S and White S H 1999 Folding of Amphipathic α-helices on membranes: energetics of helix formation by melittin; J. Mol. Biol. 285 1363–1369

    Article  PubMed  CAS  Google Scholar 

  • Ladokhin A S and White S H 2001 ’Detergent-like’ permeabilization of anionic lipid vesicles by melittin; Biochim. Biophys. Acta 1514 253–260

    Article  PubMed  CAS  Google Scholar 

  • MacDonald R C, MacDonald R I, Menco B P, Takeshita K, Subbarao N K and Hu L R 1991 Small-volume extrusion apparatus for preparation of large, unilamellar vesicles; Biochim. Biophys. Acta 1061 297–303

    Article  PubMed  CAS  Google Scholar 

  • Maloy W L and Kari U P 1995 Structure-activity studies on magainins and other host defense peptides; Biopolymers 37 105–122

    Article  PubMed  CAS  Google Scholar 

  • Manning M C, Illangasekare M and Woody R W 1988 Circular dichroism studies of distorted alpha-helices, twisted beta-sheets, and beta-turns; Biophys. Chem. 31 77–86

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki K 1998 Magainins as paradigm for the mode of action of pore-forming polypeptides; Biochim. Biophys. Acta 1376 391–400

    PubMed  CAS  Google Scholar 

  • Matsuzaki K 1999 Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes; Biochim. Biophys. Acta 1462 1–10

    Article  PubMed  CAS  Google Scholar 

  • Oren Z and Shai Y 1998 Mode of action of linear amphipathic alpha-helical antimicrobial peptides; Biopolymers 47 451–463

    Article  PubMed  CAS  Google Scholar 

  • Phoenix D A, Stanworth A and Harris F 1998 The hydrophobic moment plot and its efficacy in the prediction and classification of membrane-interactive proteins and peptides; Membr. Cell Biol. 12 101–110

    PubMed  CAS  Google Scholar 

  • Phoenix D A and Harris F 2002 The hydrophobic moment and its use in the classification of amphiphilic structures; Mol. Membr. Biol. 19 1–10

    Article  PubMed  CAS  Google Scholar 

  • Raghuraman H and Chattopadhyay A 2007 Melittin: a membrane-active peptide with diverse functions; Biosci. Rep. 27 189–223

    Article  PubMed  CAS  Google Scholar 

  • Ramamoorthy A, Thennarasu S, Lee D, Tan A and Maloy L 2006 Solid-state NMR investigation of the membranedisrupting mechanism of antimicrobial peptides MSI-78 and MSI-594 derived from magainin 2 and melittin; Biophys. J. 91 206–216

    Article  PubMed  CAS  Google Scholar 

  • Saberwal G and Nagaraj R 1994 Cell-lytic and antibacterial peptides that act by perturbing the barrier function of membranes: facets of their conformational features, structure-function correlations and membrane-perturbing abilities; Biochim. Biophys. Acta 11 109–131

    Google Scholar 

  • Schwarz G and Arbuzova A 1995 Pore kinetics reflected in the dequenching of a lipid vesicle entrapped fluorescent dye; Biochim. Biophys. Acta 1239 51–57

    Article  PubMed  Google Scholar 

  • Segrest J P, Jackson R L, Morrisett J D and Gotto A M Jr 1974 A molecular theory of lipid-protein interactions in the plasma lipoproteins; FEBS Lett. 38 247–258

    Article  PubMed  CAS  Google Scholar 

  • Segrest J P, DeLoff H, Dohlman J G, Brouillette C G and Anantharamiah G M 1990 Amphipathic helix motif: classes and properties; Proteins Struct. Funct. Genet. 8 103–117

    Article  PubMed  CAS  Google Scholar 

  • Shai Y 1999 Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides; Biochim. Biophys. Acta 1462 55–70

    Article  PubMed  CAS  Google Scholar 

  • Sharadadevi A, Sivakamasundari C and Nagaraj R 2005 Amphipathic alpha helices in proteins: results from analysis of protein structures; Proteins 59 791–801

    Article  PubMed  CAS  Google Scholar 

  • Sims P J, Waggoner A S, Wang C-H and Hoffman J C 1974 Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles; Biochemistry 13 3315–3330

    Article  PubMed  CAS  Google Scholar 

  • Sitaram N and Nagaraj R 1999 Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity; Biochim. Biophys. Acta 1462 29–54

    Article  PubMed  CAS  Google Scholar 

  • Tossi A, Sandri L and Giangaspero A 2000 Amphipathic alphahelical antimicrobial peptides; Biopolymers 55 4–30

    Article  PubMed  CAS  Google Scholar 

  • Uematsu N and Matsuzaki K 2000 Polar angle as a determinant of amphipathic alpha-helix-lipid interactions: a model peptide study; Biophys. J. 79 2075–2083

    Article  PubMed  CAS  Google Scholar 

  • Venyaminov S Y and Yang J T 1996 Determination of protein secondary structure: in Circular dichroism and the conformational analysis of biomolecules (ed.) G D Fasman (New York: Plenum Press) pp 69–107

    Google Scholar 

  • Wieprecht T, Dathe M, Epand R M, Beyermann M, Krause E, Maloy W L, MacDonald D L and Bienert M 1997a Influence of the angle subtended by the positively charged helix face on the membrane activity of amphipathic, antibacterial peptides; Biochemistry 36 12869–12880

    Article  PubMed  CAS  Google Scholar 

  • Wieprecht T, Dathe M, Beyermann M, Krause E, Maloy W L, MacDonald D L and Bienert M 1997b Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes; Biochemistry 36 6124–6132

    Article  PubMed  CAS  Google Scholar 

  • Woody R W 1995 Circular dichroism; Methods Enzymol. 246 34–71

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramakrishnan Nagaraj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivakamasundari, C., Nagaraj, R. Interaction of 18-residue peptides derived from amphipathic helical segments of globular proteins with model membranes. J Biosci 34, 239–250 (2009). https://doi.org/10.1007/s12038-009-0028-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-009-0028-0

Keywords

Navigation